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Abstract

Many of the world’s common-pool resources are located in
poor countries, where consumption levels may be sufficiently low
to have an adverse effect on the users’ health. Under these cir-
cumstances, an agent’s utility function may be described as an
S-shaped function of consumption. Using non-cooperative game
theory, very poor groups of users are shown to have a lower prob-
ability of cooperative management of common pool resources,
than groups with adequate consumption levels. However, the
chances for cooperation are greatest for users that are only mod-
erately poor. If there is a variation in resource productivity for
this group, cooperation may break down in periods of low pro-
ductivity. The theoretical results concur with empirical evidence
of cooperation in common pool resources.
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1 Introduction

A common-pool resource is a resource with a well-defined group of co-
users. There is no individual ownership, but the group can exclude
outsiders from the use of the resource. A large part of the third world’s
natural resources are managed as small local common-pool resources,
for example irrigation systems, village forests, grazing grounds and fish-
ing waters. There is a large literature on why and when we may expect
cooperative management of such resources to be successful; what is lack-
ing is an explicit consideration of the socioeconomic status of the people
managing them.

Non-cooperative game theory has been used for analysing the common-
pool resource problem for a long period of time. The infinitely repeated
prisoner’s dilemma is usually the preferred parable, since in a simple
way, it captures how community incentives can keep short-run incen-
tives to take more than one’s share of the resource in check. This paper
also uses non-cooperative game theory but includes the fact that in the
third world, users of the resource are generally poor, and dependent on
the resource for their survival or well-being. The paper explores how
the users’ incentives to cooperate are affected by their level of well-being
under the following assumptions:

First, the marginal utility of consumption is highly dependent on
the level of consumption, and there is thus a non-linear relationship be-
tween consumption and individual well-being. Second, credit markets
are imperfect and therefore, do not compensate for the non-linearity of
the utility function by smoothing consumption. Third, the state of the
resource is controlled by exogenous factors such as weather conditions
which, together with the users’ actions, determine the level of output
from the common-pool resource. The paper does not discuss the tech-
nology or dynamics of the resource.

Under these circumstances, how would we expect the users to act?
On the one hand, an agent can gain more by cheating when the resource
is large than when it is small. On the other hand, what is gained by
cheating may not be worth as much when the resource is large.

This paper predicts a non-monotonic relationship between the size of
the resource and the chances of cooperation within the group of users.
Cooperation will be more difficult when the users are starving than in
a well-fed group, but easiest of all in a group of people whose health
would be seriously affected by a slight decrease in consumption. If we
accept that the utility of an individual is closely related to her health,
the model gives clear-cut implications: When the state of the resource



is such that the users’ body mass index! (BMI) is close to 20 if they
cooperate, they will have the greatest chances of sustaining cooperation.
From this point, both increases and decreases in the size of the resource
will make cooperation more difficult.

Furthermore, changes in complementary income sources, as well as
the introduction of markets for goods or capital, can make cooperation
more difficult. When there is seasonal or stochastic variation in the
exogenous factor determining the state of the resource, cooperation will
be more difficult in periods with low resource-levels for most groups.
However, the very poor will find the periods with high resource-levels to
be the ones most prone to failed cooperation. I also find that cooperating
part of the time can be a both possible and welfare improving alternative,
when cooperating all the time is impossible. When I combine these
results, the model is strongly supported by the empirical finding that in
functioning common-pool resources, the relatively less productive period
is the greatest challenge to cooperation.

Baland and Platteau (1996, Ch. 12) give a summary of the character-
istics found to be important for successful cooperation in the empirical
literature (mainly Ostrom (1990), Wade (1988) and McKean (1986)).
One of these characteristics is that users should be highly dependent
on the common-pool resource. There are also many empirical examples
relating the breakdown of cooperation to resource scarcity. Regarding ir-
rigation systems, Ostrom (1990) gives several examples of the connection
between water scarcity and the temptation to cheat, and between bad
times and actual rule-breaking.> Ostrom, Gardner and Walker (1994)
state that ” As the availability of water decreases, temptation increases
for irrigators to break rules that limit water allocations”.? Regarding ir-
rigation systems in India, Baland and Platteau (1996) point to the high
correlation between the degree of water scarcity and the level of activity
of informal water users’ organisations. Ternstréom (2002), examining
time-series data from irrigation system in Nepal, find a positive corre-
lation between food sufficiency and cooperation, but also evidence that
deviations from cooperation occur both in times of high and low water
supply. Contrary to these observations are e.g. Cardenas’ (2003) field
experiments, where the contribution to cooperation in the common-pool
experiment was negatively correlated with the participants’ real wealth.
For a more recent review of factors that affect cooperation in locally-

!The body mass index is a measurement of weight relative to height, BMI =
weight /height?.

2See Ostrom (1990) pp. 69, 73 and 99 for examples.

30strom, Gardner and Walker (1994) pp. 225-6.

4Baland and Platteau (1996) p. 210.



managed irrigation systems, see Dayton-Johnson (2003). Wade (1987)
argues that villagers confronting crisis conditions tend to behave oppor-
tunistically, and gives examples of such incidences.?

In the literature, there are also examples of very old common-pool
resources that cease to function altogether with the disappearance of
an outside income source. Baland and Platteau (1996, p. 266) tell the
story of fishermen in Gahavilla, traditionally living off a combination
of common-pool resource fishery and wage-earnings from day labour.
When the wage earnings decreased due to a reduction in the economic
opportunities in agriculture, cooperation in fishery became more difficult
to sustain and gradually, cooperation was replaced by violent competi-
tion for the fish; see also Jodha (1988) for a similar account. Berkes and
Folke (1998) have given a number of other examples of the important
links between resource availability and management regimes. Finally,
the magnitude of the problem becomes evident when considering the
degree of dependence on local resources in developing countries, as dis-
cussed in for example Dasgupta and Méler (1997).

On the theoretical side, the most closely related contribution is Spag-
nolo (1998), who studies the effect of concave utility on the outcome of
repeated prisoner’s dilemma games. The present paper is also in some
ways related to the problem of price wars in oligopolies, see for exam-
ple Green and Porter (1984) and Rotemberg and Saloner (1986). While
the former assume imperfect information, Rotemberg and Saloner make
the same assumption as I do here, in that agents have full information
regarding the state of the world, and come to similar conclusions. Their
model predicts deviations in times of high demand, since that is when
the gain from deviating is highest, while my model predicts deviations
in bad periods, for exactly the same reason.

The paper proceeds as follows: The next section introduces the model
and gives the optimal size of the resource. Section 3 introduces comple-
mentary income sources and markets for goods and capital to the model.
In Section 4, I explore how variations in the size of the resource affects
the chances of cooperation. In Section 5, I show that the chances of
cooperation can be improved by introducing the possibility to cooperate
in some periods only. Section 6 concludes.

"Wade (1987) describes how desperation caused by a severe drought in an Indian
village made people seriously consider breaking the rules of their common irrigation
system. Wade interprets the reason for the behaviour in a slightly different way from
what I do here. The breakdown of cooperation was avoided by increasing fines.



2 The Model

Throughout the paper, my example will be that of farmers using an
irrigation system to water their fields. The farmers are the agents in
a dynamic prisoner’s dilemma game over a common-pool resource, the
irrigation system. To simplify the analysis, I assume that there are only
two agents and that they are identical in all respects. The farmers’ main
source of food and income is the harvest from the fields that get water
from the irrigation system. In the simplest version of the model, they
have no access to markets for goods or credit and no storage facilities.®
The amount of water in the irrigation system is given by the level of
rainfall, which is perfectly observable. The benefit of the rain can be
enhanced by the use of the irrigation system. The extent to which the
use of the irrigation system benefits the farmers depends on whether
they cooperate in its use. The farmers decide whether to cooperate by
comparing the utility gained by taking different actions.

2.1 The Utility Function

The empirical examples given in the introduction indicate that there
is a non-linearity in the cost-benefit ratio of deviating. There are at
least three possible causes: The relationship between the amount of
water and the size of the harvest may be non-linear, there may be a
connection between nutrition and productivity that affects the harvest
size in a non-linear fashion, and the utility gained from different levels
of consumption may not be linear. If we have multiple sources of non-
linearity, their combined effect depends on their relative location; they
may either join forces or have a neutralising effect on each other.

Given that I am examining poor agents, I here choose to focus on
the non-linearity in connection with the level of consumption. For poor
people with mainly one source of food, the supply from this source will
be crucial for their physical well-being. Figure 1 illustrates the S-shaped
correlation between BMI and the probability of remaining in good health
as presented by Dasgupta (1993, ch.14). Note that; (i) it takes a certain
(above zero) BMI to have any chances at all of staying alive, (i) the
marginal health-benefit from food is increasing for low levels of food
intake, and (4ii) the marginal health-benefit from food is decreasing for

6T extend the model to allow for storage and markets for goods and credit in
Section 3.2.



high levels of food intake.”
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Figure 1: One minus the probability of health breakdown, m(m), as a
function of the body mass index, m. Source: Dasgupta (1993) p. 416.

The causes for the decreasing marginal health-benefit from food above
certain levels are probably well known to everyone, but the increasing
marginal health-benefit may need some explanation. The reason is that
the human body uses energy to extract energy from food and if the food
input is too low, there is not enough energy to make use of it in an
efficient way. In this situation, a small decrease in the amount of food
will not only decrease the amount of energy intake but also the amount
of energy the body can extract from a given amount of food. In the
western world, the problems are mainly related to the concave part of
this relationship. However, among poor people in third world countries,
the convex part is the more relevant one. According to the 2004 World
Development Indicators,® 24 percent of the population in low income
countries were undernourished in 1999-2001. There, the definition of
undernourishment is that consumption is too low to maintain normal
levels of activity, which would imply a BMI of 18.5 or less.” These peo-
ple will be having a non-concave health-to-food relationship. As it is
the poorer rather than the richer parts of the population that depend
on common-pool resources for their livelihood,'? the relevant percentage
becomes even higher.

"See also e.g. Weir (1995) for an estimate and a discussion of the effect of income
on adult mortality.

8The World Bank (2004).

9n the 20 countries with the lowest dietary energy supply level, on average 52
percent of the population were undernourished in 1990-92. In the second and third
groups of countries, the percentage was 34 and 23, respectively (FAO, 1997). In
low-income countries, on average 31 % of the children under the age of five suffered
from malnutrition. Based on Table 6, World Development Report 1996.

10See e.g. Jodha (2001) Table 5.1.



The above figures make it abundantly clear that we must take the
particularities of poor people into account when modelling common-pool
resources in developing countries. For this purpose, I assume health to be
an important component in utility. Thus, we can translate Dasgupta’s
food to health relationship into an S-shaped function of the utility from
food, with one interval of non-decreasing positive marginal utility and
one interval of non-increasing positive marginal utility from food.!! As
food in this model mainly comes from the crops grown on the farmers’
fields, the implication is that the marginal utility of the harvest is largest
when the BMI equivalent of the harvest is between 15 and 18.5. Based
on the above discussion, I assume that the utility of consumption (or
harvest) can be characterised as U (C) > 0 with U’ (C) >0, U" (C) >0
for C' < Mwm1, and U” (C) < 0 otherwise.'® The inflexion point is referred
to as MMI, the point of maximum marginal impact. C' expresses the
consumption level (or harvest size) in BMI-equivalents. Note that I
implicitly assume that people will stop eating before food has a negative
effect on their health. In the numerical examples, I use the following
specification of the utility function, which is a good approximation of
the relationship depicted in Figure 1, but with an asymptotically linear

upper end.
~1

1
U = |1 —v(C—mM1) 1
(€)= |1+ g+e , (1)
where MMI = 16.5, and v = 1.4."® The below figure shows the resulting
utility function. I have assumed that the y-axis in Figure 1 is measured
on a scale from 0 - 1 (for probability), and utility is assumed to be
measured on the same scale. The x-axis shows the BMI-equivalent of

HSee also Ravallion (1997) who uses a survival function that is concave above a
consumption floor, below which there is simply not enough food to sustain the basic
functions of the body.

2For readers who are not quite comfortable using an S-shaped utility function,
note that I could instead use a linear utility function together with an S-shaped
survival function. Let P (amq, q,) represent the probability of staying alive as a
function of the size of the harvest. By letting Pa (ama, 4y) OTay a5 = U (074, a5), it
is evident that the results will be identical.

3Note that for simplicity, the function is assumed to be symmetric around MMI.
To make the relationship as similar as possible to that suggested by Dasgupta, I let
MMI = 16.5, instead of the appropriate 18.5. This only slightly affects the illustrated
results but should be kept in mind.



consumption.
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Figure 2: The utility function of equation (1).

2.2 Actions and Material Payoffs

In every period, each farmer i € {1,2} chooses an action a; € {c,d},
where ¢ represents cooperation and d deviation. To focus the attention,
the relative size of the harvests for different combinations of actions,
Tay1,as, 15 kept constant throughout the paper, which implies that as the
level of rainfall changes, it is only the absolute productivity-level of the
irrigation system that changes. The size of the harvests the farmers
obtain when cooperating, relative to the size of their harvests when
not cooperating, is unaffected. What we then have is a common-pool
resource game with variations in the absolute size of the payoffs (with
the level of rainfall), but where the relative size remains the same. We
can thus express farmer 1’s consumption as C' = amg, q,, With a being
the amount of water.!* By assumption,

Td,c > Te,c > Td,d > Ted- (2)

Being a single deviator gives the largest harvest, and attempting to co-
operate when the other farmer deviates results in the smallest harvest.
I assume the sum of the harvests to be maximised under mutual coop-
eration, that is

271'0,6 > Tde+ Med- (3)

Thus, the stage game will be a prisoner’s dilemma with {d,d} as the
unique equilibrium.

14 Assuming that the harvest size is a linear function of the amount of rainfall is of
course a simplification of reality. It may be more correct to assume that the harvest
size is also an S-shaped function of water. This could make the results even more
pronounced.



2.3 The Repeated Game

In the repeated game, I assume discrete time, ¢, and an infinite horizon.
The size of the harvest in a certain time period determines the level of the
farmers’ utility during that same period. I assume that the farmers have
identical discount factors, ¢, which are independent of their consumption
levels.!?

A strategy is a prescription of what action to take at every stage,
given the history of the game. We are interested in characterising a strat-
egy generating the maximum amount of cooperation. From Abreu (1986,
1988), we know that in a repeated prisoner’s dilemma game, a trigger
strategy (where the agents choose the cooperative action in every pe-
riod until, for the first time, they notice that someone has deviated, and
thereafter shift to playing ”deviate” forever) is optimal in this sense. If
such trigger strategies cannot sustain cooperation, neither can any other
strategies. Otherwise, cooperation is a possible equilibrium outcome.!®
The discounted utility of behaving cooperatively, when all players do, is
then

> U (ame,), (4)

and the discounted utility of deviating is

Ulamae) + Y 0'U (amaa) . (5)

t=1

To test whether the trigger strategy can sustain cooperation, it suffices
to check whether it will be beneficial for the agents to deviate from this
strategy in a single period. Thus, for cooperation to be a subgame-
perfect equilibrium, expression (4) must be equal to or greater than
expression (5).!7 Thus, cooperation can be sustained for all discount
factors above the critical level (the critical discount factor),

. ~ Ulamge) — U (am,)
0" () = Ul(amge) — U (amgq)

(6)

What I am interested in here is the effect on the critical discount factor of
varying the the size of the common-pool resource, in this case measured

15 However, this implies assuming that the discount rate is not affected even when
survival is threatened. Thus, we should be careful when interpreting the results for
the lowest consumption levels, where the survival constraint may add to the difficulty
of achieving cooperation.

16The purpose of using such a grim strategy is to see if cooperation is at all possible
under the above assumptions regarding the utility function.

17Note that this is one among many equilibria, and that even though a cooperative
equilibrium exists, it is not necessarily the one to be chosen.



by the amount of rainfall. From Spagnolo (1998), we know that with
concave utility, the more concave are the agents’ utility functions, the
smaller will the critical discount factor at which a certain set of material
payoffs can be supported as a subgame-perfect equilibrium outcome be.
The intuition behind this result is that an agent with a strictly concave
utility function has a lower marginal valuation of the increased payoff
gained by deviating and a higher marginal valuation of the decreased
payoff when punished for it, than an agent with a linear utility func-
tion.!® Applying this argument to my S-shaped model, the implication
is that with the same relative harvest sizes, the utility gained by deviat-
ing relative to the utility lost when punished for such an action will be
larger when utility is convex than when it is concave. Thus, it should
take a larger discount factor to deter deviations on the convex than on
the concave segment. The following proposition verifies that this will
be the case. See Spagnolo (1996, 1998) for the original proposition and
proof regarding the effect of concave utility.

Proposition 1 The critical discount factor is increasing in the convex-
ity of the utility function.

Proof. Let 6% be defined as the parameter that fulfills

ATee = (5La7rd7d +(1—9") amg, (7)
and let U (aﬁai7aj) be a convex transformation of ar. .. By the definition
of convexity, we know that, for all «

U (ame.) < 6"U (amgq) + (1 —6") U (amq,) - (8)
Solving for 6 results in

Ulamg.) — U (am,)

oF < .
~ Ul(amge) — U (amgq)

(9)

where the right hand side equals the definition of the critical discount

factor in (6) . Hence,
oF < 6%, (10)

i.e. the critical discount factor is increased by a convex transformation
of the utility function.

18Note, however, that while Spagnolo keeps the absolute material payoffs constant,
I keep the relative size of the payoffs constant and thus, there is an increase in both
the size and the spread of the material payoffs.
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To understand what happens in the intermediate segment, where
parts of the material payoff matrix are on the concave segment and other
parts of it are on the convex segment of the utility function, i.e. when
MMI/ T4, < o <MMI/ 744, it helps to solve for U (am..) in equation (6)

U(ame,) < 68U (amgq) + (1 — 6%) U (ama,) . (11)

First, as the payoff from deviating increases above MMI, the growth rate
of this payoff will be slowing down. To keep (11) satisfied, this must
be countered by a decreasing critical discount factor. When « further
increases, so that am.. >MMI, the cooperative payoff also starts to grow
at a slower rate, and we get a counteracting force, which slows down
the decrease in the critical discount factor. Figure 3 shows the resulting
shape of the critical discount factor, with the z-axis showing the BMI-
equivalent of the harvest size under cooperation.

0.8 +

0.6 + 5*((2')

Cooperation

04 + Possible

0.2 1 Cooperation
Not Possible

0.0

12 14 16 18 20 22 24 26 28 @&

Figure 3: The critical discount factor when w4, = 1.1m.. and mgq =
0.97.c.

3 Empirical Implications

The results of the above analysis imply that if utility is linear, the amount
of water available is irrelevant for the probability of cooperation. How-
ever, if utility is not linear, the curvature of the utility function is of
crucial importance for the chances of cooperative management of the
common-pool resource. With an S-shaped utility function, it is easier
for a group to sustain cooperation if the amount of water is such that
utility is measured on the concave segment of the utility function than
on the convex segment. The most discouraging result is, of course, that
the groups with the greatest need to increase the harvest size above

11



the cooperative level are also the ones with the greatest risk of instead
having it reduced.

Furthermore, increasing the difference between relative payoffs makes
cooperation easier at intermediate and large resource levels but increases
the critical discount factor when the resource is small, as illustrated
below. The reason is that the larger the span is between the material
payoffs, the larger is the span of consumption levels where the non-
linearity of the utility function affects the critical discount factor.

J 1.0

0.8 +

0.6 +
Cooperation S ()

04+ Possible

021 Cooperation
Not Possible

0.0

12 14 16 18 20 22 24 26 28 Q.

Figure 4: The critical discount factor with larger differences between
relative payoffs, mq. = 1.2m.. and 744 = 0.8, .

Given that we accept the assumption of utility being dependent on
health, the model gives clear-cut numerical results. From the graphical
presentations in Figures 3 and 4, it is obvious that a BMI of around 20
when cooperating, that is, where the utility function is most concave,
provides the best chances of successful cooperation. If the resource is
smaller, a further decrease will make cooperation more difficult. Com-
paring these results with the above discussion on the average BMI in
poor countries, we can conclude that it is the poor but not starving
who have the best chances of cooperating, that decreases in the size of
the resource will make cooperation more difficult, and that this group
constitutes a substantial part of the population in poor countries.

3.1 Additional Income Sources

With a slight change in the model, we can analyse the case where the
agents have an additional source of income, 3, for example a wage from
day labour.!” The consumption level will now be a sum of the income

9For an analysis of the effect of inequality in the size of the additional income
sources, see Ternstrom (2002a).
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from the two sources, C' = B+ am,, 4,. Let the additional income source
be the one depending on the exogenous variable factors, and let the size
of the harvest depend only on the cooperative success of the farmers.
The result is to give the exogenous variable an additive, rather than a
multiplicative, effect.?’ By performing the same analysis as above, we
can analyse how different sizes of the complementary income affect the
cooperative efforts of the farmers. The critical discount factor will now
be as follows, with the subscript add for additive,

_UB+amg.) —U(B+am,)
B U(B + aﬂ-d,c) - U(ﬁ + Ckﬂ'd’d)'

The figure below shows that if, instead of letting the level of rainfall
differ, we give the group of farmers a complementary source of food or
income and let this differ, we obtain similar results, but with a different
interpretation. The effect is opposite to that of increasing the relative
difference between payoffs, as we did in Figure 4. Here, keeping the ab-
solute difference between payoffs constant, in effect results in decreased
relative payoff differences as the size of the exogenous variable increases.
With a smaller absolute difference, the non-linearity of the utility func-
tion has a more limited effect on the critical discount factor.

add (€Y (12)

J 1.0

0.8 +

0.6 | 8 waa B, @)
0.4 1

0.2 +

0.0

12 14 16 18 20 22 24 26 28 B+ qm.

Figure 5: The critical discount factor with a complementary income
source when the return from the common-pool resource is too small to
survive on; ame. = 12, mg. = 117 and mg4 = 0.97 .

The implication is that the success of the cooperative management
of a common-pool resource also depends on the size of the users’ com-
plementary income sources. If the complementary income is such that it
minimises the critical discount factor, the system is sensitive to both in-
creases and decreases in the size of the complementary income. It is also

20This also implies constant absolute, instead of constant relative, payoff sizes.
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important to note that if we assumed utility to be linear, changes in a
complementary income source would have no effect on the management
of the common-pool resource.

By varying the size of the material payoffs relative to the size of the
complementary income, we can study the effects of different degrees of
dependence on the common resource. As the payoffs from using the re-
source become a smaller part in total consumption, the sensitivity to
changes in the additional source of income decreases and the critical dis-
count factor becomes flatter. This implies that as dependence on the
common-pool resource decreases, it becomes more difficult to cooperate
at intermediate income levels. Hence, the assumption of a non-linear
utility function provides explanations for both Ostrom’s (1990) observa-
tion regarding resource dependence and Jodha’s (1988, 2001) observa-
tions regarding market integration.

Baland and Platteau’s (1996) description of what happened to the
fishermen in Gahaviilla (see the introduction) is a good example of a
change in an additional income source. The common-pool fishery had
developed and improved over a long period of time, from which we may
suspect that the system was operating on a scale where cooperation was
easily sustained. The disappearance of their complementary source of
income implied a left-ward move along the utility curve and an increased
critical discount factor. Consideration for these kinds of effects should be
given when choosing the location for aid projects, both when the project
itself requires cooperative management, and when there are pre-existing
common-pool resources.

3.2 Storing, Saving and Selling

What would happen if we were to introduce the possibility of saving part
of the harvest until future periods? In theory, users with convex utility
would increase their total utility by making their consumption as uneven
as possible. Thus, they could gain a very high marginal utility in one
period at the cost of an only slightly reduced utility in other periods.
It is, however, difficult to imagine that a person close to dying from
starvation would voluntarily relinquish any of his consumption today for
use in a future period, since that future period may never come. Thus, I
shall refrain from using my model to analyse that case. As far as credits
are concerned, I shall simply assume that users on the convex segment
are ineligible for loans, and thus will not be able to make use of credit
markets, even if they want to.

Hence, I here focus on the concave part of the utility function. With
concave utility, being able to reallocate the consumption of some of the

14



additional harvest gained when deviating to one punishment period or
more will increase the marginal utility of the reallocated amount and
thus, the total benefit from deviating. However, unless the storage
methods are perfect, there will be a loss connected with transferring
the harvest in time. The smaller is this loss, the more of an obstacle
to cooperation storage will be. Assuming that a share s € [0, 1] of the
difference between the size of the harvest when deviating and when be-
ing punished is saved for one period, and that a fraction r € [0, 1] of
the saved harvest remains after one year of storage, we can write the
condition for storage facilities to be harmful to cooperation as

Ulamge — s(amge — amgq)] + 0U [amga + s (amge — amgq)] (13)
>U (aﬂ'd,c) +6U (Oéﬂ'dd) . (14)

The larger is r and the more concave is the utility function, the larger is
the left-hand side of equation (13), and the more of a threat will storage
be to cooperation.

If we introduce credit markets on top of a perfect storage method,
thus adding the possibility of earning interest on the saved amount,
the effect is the same as if the fraction remaining after storage were
larger than one (r > 1). Furthermore, credit institutions would make it
possible to spread the gains from deviating over more than two periods,
thereby further increasing the marginal utility of deviating.

The effect of introducing goods markets may be illustrated as an
increase in the marginal benefit from deviating, since there is a market
on which the additional harvest gained by deviating can be exchanged
for other goods with a higher marginal utility. This implies making the
concave part of the utility function steeper, that is, making utility move
more quickly towards its maximum.?! The below figure (where I have
increased 7 in equation (1) to 1.6 for am,, 4, >MMI), illustrates that this
makes cooperation more difficult at the upper end of the utility function.
Jodha (1988, 2001) suggest that one reason that the introduction of
a nearby marketplace is harmful to the cooperative management of a
common-pool resource, is that it reduces the social cohesion, thus making
it more difficult to maintain the social norms regulating the use of the
common resource. Another explanation could thus be the possibility
of changing the composition of consumption and thereby get a higher

2 Kranton (1996) and Spagnolo (1998) provide different approaches and more for-
mal analyses of the effect of market access on reciprocal-exchange and cooperation,
respectively.
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marginal utility from deviating.

5 1.0
08 [

0.6 +
é*markets(a)
04 +
5 (a)
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Figure 6: The critical discount factor with access to markets, when 7q . =
11mee, maa = 0.9 .

4 Variations in the State of the Resource

In this section, I extend the base-line model to analyse the effect on
cooperation of variations in the amount of rainfall. I here focus on
stochastic variations, and refer to Appendix A for an analysis of seasonal
variations. Note that this is no longer a repeated game, since there is
variation in the state of the resource. Thus, the trigger strategy used so
far may no longer be the optimal strategy. The extension in Section 5
shows a strategy that may improve the outcome.

4.1 Stochastic Variations

Suppose that weather is variable and somewhat unpredictable. The
farmers know the possible levels of rainfall and their likelihood, but do
not know what the actual level will be until each period begins. We thus
continue to assume that farmers have full information about the level of
rainfall in the present period, but now assume future levels of rainfall
to be stochastic. To simplify the analysis, we assume i.i.d. shocks and
only two possible levels of rainfall, wet (cv,) or dry (ag), with a,, > ay
always.??

In each period of time, we let the probability of the high level of
rainfall be p,,. Define the possible levels of rainfall in future periods as

22In reality, there will be many possible levels of rainfall, not just two as assumed
here. This should not have any major effect on the analysis, as the only difference
in the equation for the critical discount factor will be that the expected loss from
deviating consists of more terms.
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a, € {ay, aq}, where T € {t > 0}. We write the expected utility*® from
a certain combination of actions in any future period as

E.[U (O‘Tﬂ'ahaz)] = puU (O‘wﬂahaz) + (1 =pu)U (adﬂahaz) . (15)

*

To find the critical discount factor of a wet period, 0%, (), We set
the discounted expected utility from cooperating equal to the discounted
expected utility from deviating,

Ulowmee) + Y 0B, [U(0rmee)] = Ulawmae) + > 0B [U (armga)]
t=1 t=1

(16)
and solve for the critical discount factor,

U (awﬂ-d,c) U (awﬂ-QC)

U(awmae) — U(wmee) + Er [U (rmee)] — B [U (@rmaa)]
(17)

:toch (Olw) =

The critical discount factor of a dry period is, correspondingly,

(g = Ul(agrge) — U (aqme.)
stoch U (Oédﬂ-dﬁ) -U (adﬂ-c,c) + ET [U (a/’rﬂ-c,c)] - E’T [U (OéTﬂ-d,d)] .
(18)
The sum in the numerator represents the benefit from deviating, while
the sum of the two expected utilities in the denominator represents the
expected loss from doing so. Since the expected punishment is the same
for both outcomes, it will take a higher discount factor to sustain coop-
eration in the outcome giving the largest benefit from deviating. Thus,
we can state the following:

Proposition 2 When rainfall s stochastic, cooperation is easier in the
wet than in the dry period if and only if U (awmTae) — U (o) <
Ulagrge) — U (oqme).

Proof. Assume that 0%, () < 05oen (aq). Substituting from equa-

tions (17) and (18) and simplifying yields
Ulaymae) — U (aymee) < U (agmae) — U (oame) - (19)
|

On the one hand, the size-effect of more rain in the wet period will
always work in the direction of making cooperation more difficult, since

23Note that I assume the von Neumann-Morgenstern expected utility function to
be identical to the S-shaped utility function used so far.
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it increases the absolute difference between material payoffs. On the
other hand, the non-linearity of the utility function creates a utility-
effect that may work in the other direction. A necessary condition for
the dry period being the more difficult for cooperation is thus that the
gain from deviating falls on a steeper segment of the utility function in
the dry than in the wet period. Thus, as Figure 7 shows, it is mainly with
intermediate levels of rainfall in the dry period that it will be significantly
more difficult to cooperate in the drier year.?*

Combining this result with the main result of the analysis in Section
3, we can conclude that when the chances for cooperation are the highest,
the relatively poorer period is the greatest challenge to cooperation. This
is exactly what was reported in some of the empirical studies referred to
in the introduction. In functioning common-pool resources, deviations
mainly occur in the less productive period.

J 10

0.8 +

0.6 & é*stoch(ad)

04 |

0.2 1 é*smch(aw)

0.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
12 14 16 18 20 22 24 26 28 g 7.

Figure 7: Stochastic variations in the amount of rainfall when w4, =
117,

Tad = 0.97mcc, g = 0.9, and p,, = 0.5. Note that the z-axis gives the
cooperative payoff in the wet period.

Let us look at some implications of these results. From Figure 7, it
is obvious that there is one point at which cooperation is particularly
sensitive to changes in the levels of rainfall. At the intersection of the
two curves, a very slight change in « can cause a regime shift in terms
of in which period it is easier to cooperate.

A change in the difference between the possible levels of rainfall also
have drastic effects. According to the IPCC,?® one likely effect of global

24The main difference between this case and that with seasonal variations lies in
the calculation of the sizes of future harvests, where the probability in the stochastic
case, and the timing in the seasonal case, affect the outcome. When I let the relative
probability of the levels of rainfall in the stochastic case equal the relative length of
the seasons in the seasonal case, the results are very similar.

25See e.g. Houghton, Callander and Varney (1992).
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warming is an increased variability in the climate. A simple numerical
example illustrates how this could affect the management of common-
pool resources. In Figure 8, I have increased the difference between the
two possible levels of rainfall by letting oy = 0.8cv,. When a7, .= 20
in Figure 7 and o,m..= 21.11 in Figure 8, we have the same average
amount of rainfall (and thus, the same average consumption level) in the
two cases. Although the variability in rainfall is only slightly increased,
the effect is dramatic, especially for the critical discount factor of the
dry period. Unless the farmers’ discount factor is very high, this will
lead to a collapse of cooperation. If, at the same time, there is a change
in the average amount of rainfall, this will also alter the critical discount
factors. The results of course depend on the exact specification of the
model, and on how much the variability in rainfall changes. The main
lesson to be learned is that the management of common-pool resources
could be very sensitive to disturbances. Thus, global warming may have
a hidden side-effect, which has the potential of causing substantial costs
to society, both in terms of conflicts and a less efficient use of local
natural resources.

J 1.0

é*smch (aw)

0.8 +
0.6 +
é‘\—smch(ad)
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Figure 8: The effects of an increased variability in rainfall, my, =
1lm.,,
Taq = 0.97cc, ag = 0.8y, and p, = 0.5.

5 Partial Cooperation

Now, if farmers know that cooperation will fail because it cannot be
sustained in some periods, is there any alternative strategy which could
improve their situation? There are empirical examples of common-pool
resources where the users forgive fellow users for breaking the rules, if
this is due to bad times. In their study of land relations in Rwanda,
André and Platteau (1998) found that there was a more lenient attitude
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towards wvoleurs par faim (thieves out of hunger), than towards voleurs
par défaut (vicious thieves). McKean (1986) describes how rule-breaking
in a Japanese village forest was ignored if it took place in particularly bad
years. Below, I examine whether introducing a more forgiving attitude
will increase the chances of cooperation in the model presented above.?

First of all, define easy periods as periods when the critical discount
factor, 6", is not larger than the farmers’ discount factor, ¢, and difficult
periods as those when it is. Thus, cooperation is by definition possible
in easy periods only. Let the variable 6 describe whether cooperation
could have been credibly sustained in period t (6; = 1), or not (6, = 0):

o {1 if o 8=4
Tl if d<an

Let the actions taken by each of the farmers in period ¢ be represented
by

(20)

ay = {al,n az,t} . (21)
We can now describe the history of the game at date T,
hr = {as, 0 Z:ol . (22)

Let the forgiving trigger strategy prescribe cooperation in easy periods,
0; = 1, until history for the first time contains any time period when it
would have been possible to cooperate, but some farmer did not, that
is, until

hr ={air =d, 6, =1} somet < T, somei, (23)

and then deviate for ever. Deviations in difficult periods, 6; = 0, will
be forgiven and are not punished, which means that we must adjust
the expected cost of deviating to the removal of the punishment in the
difficult period.?” Substituting from equation (15), if farmers are allowed
to ignore deviations in dry years because these are difficult periods, the
two expected utilities in the denominator of equation (17) become

E U (armee)] — Er U (rmaa)]

= puU (wTee) + (1 — py) U (agmaq)

— pU (Ozuﬂrd,d) + (1 — pw) U (Oédﬂd,d)

= pu [U (ayTee) — U (Taa)] - (24)

26 As above, I will here focus on the stochastic case, and refer the analysis of the
seasonal case to Appendix B.

2"TNote that we here assume a full reversal to non-cooperative behaviour in the
difficult periods. Another, and perhaps more realistic, assumption would be that
partial deviations are allowed. We also assume that agents can effortlessly return to
cooperation after the difficult period.
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The equation giving the critical discount factor changes accordingly. If
the wet period is the easy period, we have (with superscript f for ex-
tended)

U(aymae) — U (ayme,)
U(wTae) — U (uwTee) + puw [U (QuwTee) — U (@wmaa)]’
(25)
and the equivalent for the dry period when that is the easy period. I
want to compare the lower of these with

5£toch (Olw) =

Omaz = ML {0 ocp (Qw) 5 Ogyoen (@a) } - (26)

max stoch

When 67/, is below 67,,,, as for values of o, .. between 17 and 20.5
in Figure 9, the forgiving trigger strategy can improve the chances of
cooperation. If the farmers’ discount factor is between these two, they
will be able to sustain cooperation by following the forgiving trigger

strategy, although cooperation was not possible without forgiveness.

0.8 +

0.6 +

0.4 1

0.2 +

0.0

12 14 16 18 20 22 24 26 28 g, 7.

Figure 9: The effect of forgiveness with stochastic variations in the level
of rainfall, w4, = 1.17c ¢, Tgq = 097, ag = 0.9, and p,, = 0.5.

Note the similarity with Rotemberg and Saloner’s (1986) result that
price wars in oligopolies should be observed in periods of high demand.
The intuition behind their result is that deviation gives a higher gain
when demand is high. To avoid a total breakdown of cooperation, the
oligopoly allows for a lower price in such periods, in other words partial
deviations are forgiven to a certain extent. In my case, a total breakdown
of cooperation can also be avoided by forgiving deviations in periods
when the net gain from deviating is particularly high. The difference is
that I measure the gain in terms of utility instead of material payoffs,
and that I do not allow for partial deviations.
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6 Final Remarks

In this paper, I have shown that when utility is non-linear, the consump-
tion level of the users of a local common-pool resource affects the chances
of cooperative management of the resource. The results correspond well
with empirical studies of common-pool resource management. In par-
ticular, we saw that groups of users with an intermediate consumption
level, here meaning poor but not starving, will have the best chances
of cooperative management. If there is variation in the size of the re-
source, the relatively poorer period will constitute the largest threat to
cooperation for this group.

The model builds on some assumptions that may seem rather re-
strictive. 1 confine myself to groups of users whose utility is closely
related to their state of health which, in turn, is closely related to their
consumption level. Furthermore, I assume mainly that they have no
access to goods or credit markets. Nevertheless, when we place the local
common-pool resource in one of the least developed countries, neither of
these assumptions is at all implausible.

Throughout the paper, I have implicitly assumed that there is no
time dependency, neither in the users’ health nor in their use of the
resource. Introducing time dependence, for example in the form of a
stock-variable for health, or by letting the farmers’ actions in one period
have an effect on the productivity of the resource in future periods,
would naturally affect the results. Even more restrictive is perhaps the
implicit assumption that monitoring is perfect and costless, and that the
only punishment is to revert to a total lack of cooperation. Judging from
the empirical studies reported by, for example, Ostrom (1990), assuming
that monitoring is costly, imperfect and of varying intensity, and that
there are other forms of punishment of varying severity, would be more
realistic. Finally, I have assumed the discount rate to be independent
of the consumption level. If it were not, cooperation would become
even more difficult at the lowest consumption levels, but may become
easier at the highest consumption levels. Despite these restrictions, the
model gives some very interesting insights into the effects of relaxing the
assumption of linear utility.

It would be interesting to extend the model to more than two users,
so that the larger is the amount of farmers sharing the water of the ir-
rigation system, the less water there is for each of them. The harvest
on each farmer’s field would then partly depend on how the irrigation
system is managed, partly on the annual rainfall and also partly on how
many farmers share the water. Herein lies a possibility for an endogenous
size of the user group decided by, for example, in- and out-migration of
users to accommodate for seasonal or stochastic changes in the weather.
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Exogenous changes in the number of users due to, for example, pop-
ulation growth within or outside the group, would have similar effects
as the changes in the size of the resource that I have discussed in this

paper.
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Appendix A: Seasonal Variations

We here analyse seasonal variations in the amount of water in the ir-
rigation system. Many areas have one rainy and one dry season. As
seasons vary, so does the level of rainfall and, by now, we know enough
to expect this to have repercussions on the farmers’ ability to cooper-
ate. Once more, I assume that there are only two possible outcomes,
wet and dry, but here, I let every other period be wet and every other
period dry. Thus, there is the same variability as with stochastic vari-
ations, but none of the uncertainty of that case. This implies that it
is the timing rather than the probabilities of the two possible outcomes
that determines the expected loss from deviating. Thus, there will be
a difference between the two seasons’ costs of deviating, affecting their
critical discount factors.

Assume that each farming year consists of two seasons of equal
length, with a,, and ay denoting the levels of rainfall in the wet and
dry seasons, with «,, > a4. In a wet season, the discounted utility of
cooperating will be

D 8 U (wTree) + 0U (aame,)] (27)
t=0
and the discounted utility of deviating
U(owmae) = Ulowraa) + > 0% [U(cwmaa) + 0U (aamaa)] . (28)
t=0

To avoid deviation, it must be true that

6% [U (Tae) — U (awmaa)]
+0 [U (qwamee) — 0U (ama,a)]
+U (awTee) — U (0pTayc)
> 0. (29)

We can express the critical discount factor of a wet season®® as

U (aamee) = 0U (aama,q)
2(U (awmae) — U (wTaa))

U (OdeFQC) — 5U (Oédﬂ'dd) 2
i { [2 (U (@wmac) — U <awwd,d>>]

U(awmae) — U (QuwTee) }1/2
U (Ckwﬂ'd’c) — U (Ckwﬂ'd@)

Oseas () =

seas

28Note that we disregard the negative root.
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and the critical discount factor of a dry season as
U (wTee) — 0U (Taq)
2 (U (Oédﬂ'd,c) U (Oédﬂ'dd))
[ U(wTee) — 0U (Taq) r
_'_
2 (U (adﬂ'd,c) — U (adﬂ'd,d))

Ul(agrae) — U (agme.) }1/2
Ul(agrae) — U (aqmaq)

Ogeas (Qta) = —

seas

(31)

A comparison of Figures 7 and 10 shows that despite these rather messy
expressions, the result is very similar to the case with stochastic varia-
tions and an equal probability of the two outcomes. The slight difference
is caused by the difference in the expected cost of deviating.
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Figure 10: Seasonal variations in the level of rainfall when 4. = 117, Tga =
097, and ag = 0.90,.
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Appendix B: Partial Cooperation with Seasonal Vari-
ations

In this appendix, I confirm that a forgiving attitude can increase the
chances of cooperation in the seasonal as well as in the stochastic case.
When the easy season is a wet season, the forgiving trigger strategy
results in the following discounted utility from cooperating,

> 8 U (qwee) + 0U (aqmaa)] (32)
t=0
and from deviating
U(wmae) = Ulaamad) + > 6% [U (awmga) + 0U (agmaa)] . (33)
t=0

From this, I get the critical discount factor,

U (awﬂ-d,c) -U (awﬂ-QC)

5:1: w) — 9
seas (Of ) U (Oéwﬂ-d,c) —U (Oéwﬂ-d,d)

(34)

that is, the square root of the critical discount factor for the same amount
of rainfall in the base-line case. Figure 11 shows that, as in the stochastic
case, there is an intermediate size of the resource where cooperation will
be facilitated if farmers are more forgiving.
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Figure 11: The effect of forgiveness with seasonal variations in the level
of rainfall, when w4, = 117, Taq = 0.97.., ag = 0.90,.
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