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Abstract

Coral reefs may naturally �ip between coral-dominated and algae-dominated

states, when species�stocks trespass some threshold levels. This has conse-

quences for �sheries management, which are analyzed here. This article shows

how �shing can a¤ect the location of ecosystem thresholds and provoque an

ecosystem �ip. In particular, the interplay between fast (algae and �sh) and

slow (coral) variables has an important role in the dynamics of these �ips.

The analysis of slow and fast processes gives insights about the mechanisms

underlying an ecosystem �ip. The article shows also how these insights could

be useful to detect thresholds and �nd new variables to control the reef�s

dynamics.

Keywords: multiple steady states, �sheries management, non-convexities,

slow and fast processes.
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1 Introduction

Sometimes, algae that seem to come out of nowhere invade coral reefs. If they

shade the corals for too long, they may kill them and the previously diverse coral

reef becomes dominated by algae and few other species. Such changes occur rapidly

and are called ecosystem shifts. Recent research1 shows that ecosystems like lakes,

forests or savannas can experience similar shifts.

Ecosystem shifts a¤ect the services that people derive from the reefs and hence

people�s well being. A coral reef produces, for example, much less �sh and tourist

sites after an algae invasion. These ecosystems are di¢ cult to manage because mar-

ginal changes in management methods could have huge e¤ects on the ecosystem,

hence on future management opportunities. Due to multiple steady states, several

strategy paths may ful�ll marginal conditions derived using optimal control theory

or dynamic programming, but some of them may be suboptimal. Following such

a path would lead to a much-undesired outcome.2 The best management paths

may depend on previous actions so to avoid huge mistakes we must calculate all

future costs and bene�ts of each alternative path. Such calculations require a lot

of information about the future, which highlights the need to come up with alter-

native ways of handling this kind of resource management problems in practice.

Recent research discusses many alternative strategies to manage complex adaptive

ecosystems. Unfortunately few of them seem well suited to manage ecosystems with

thresholds.

Ecosystem shifts seem to be linked to their resilience�their capacity to cope with

changes in the environment. Resilience often derives from slow variables, such as

reservoirs of soil nutrients, heterogeneity of ecosystems on a landscape, or variety

of genotypes and species. (Folke et al. 2002). This article highlights the role of slow

variables that trigger shifts between coral-dominated and algae-dominated states.

This produces new insights on the coral reef dynamics and also on management

opportunities for such ecosystems.

The technique used here is called geometric singular perturbation theory (Fenichel

1979). Similar techniques are often used in ecology (See for example Ludwig, Jones

and Holling 1978). Milik and coauthors (1996) seems to be the only example in

economics. With this method they line up the characteristics of their system that

would characterize the beginning of a sustainability loss. Knowing this enabled

1See for example Crépin 2002, Dasgupta and Mäler 2003 and the thresholds database of the
Resilience Alliance, http://www.resalliance.org.

2See Brock and Starrett 2003, Mäler, Xepapadeas and de Zeeuw 2003, Crépin 2002 and 2003,
Wagener 2003, Dasgupta and Mäler 2003.
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them to react before a crash occurred.

Section 2 describes typical characteristics of coral reefs and proposes a rather

general way to model their dynamics. Singular perturbation theory is used to

highlight the reefs�fast and slow processes and the mechanisms that trigger shifts

between alternative states. Section 3 shows how �shing a¤ects the threshold lo-

cation. Section 4 derives more speci�c results on optimal �sheries. In particular

it shows that even optimized �sheries make the reef more prone to shifts. This

section also shows that similar to the natural ecosystem, changes in the ecosystem

dynamics occurred before the system has shifted to a less favorable state. Section

5 discusses how a manager can use the insights from the previous sections to better

manage the coral reefs and maybe get warning signals that the system is about to

shift. Section 6 concludes.

2 Coral reef ecosystems

A typical coral reef is made up of slowly growing coral colonies � animals that

consist of up to tens of thousands of tiny polyps. (Davidson 1998). The combi-

nation of fast and slow processes characterizes coral reef dynamics: algae and �sh

populations are fast variables that adapt quickly to changes. In contrast, coral can

be viewed as a slow variable.

Consider a coral reef at time t with non-negative populations of algae (x (t)),

herbivores3 (y (t)) and coral (z (t)). Fish have a logistic growth with growth rate Ry

and carrying capacity Kx that depends linearly on the amount of algae available.4

There are abundant indications that transient predators � who come to spots where

prey is abundant and leave spots where prey is scarce � play an important role in

the mortality of herbivores.5 Following Turchin (2003), a Holling type III functional

response (Holling 1959) models such behavior: predation is low below a threshold

value at which a switch occurs and predation becomes high and reaches a saturation

value.6 Let F
z
be the maximum average number of �sh that predators, not including

humans, catch per unit of time. This is a decreasing function of coral because corals

provide shelter against predators. Let Y be the threshold between low and high

predation7. Predation can be written F
z

y�

Y �+y�
, where � > 1 indicates how sharp the

3Algae-eating �sh.
4This way of modeling food availability is discussed for example in Turchin (2003 p.99).
5Indications of that kind of behavior are discussed for example in Roberts (1995), Jennings

and Polunin (1997) and Stewart and Jones (2000).
6So the herbivore equation fully include predator dynamics.
7It is also called the half-saturation herbivore population: for a herbivore population of size

Y , predators could catch half as many herbivores as they would have caught if herbivores were
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threshold is between high and low predation; a higher � corresponding to a sharper

threshold. When � is in�nitely large, predation makes a discrete jump between 0

and F
z
when the threshold is crossed. The equation of motion for �sh is:

dy

dt
= Ryy

�
1� y

Kx

�
� F

z

y�

Y � + y�
(1)

Coral and algae compete for light. This is modeled using a simpli�ed version

of the competition model for �oating and submerged aquatic plants, which Sche¤er

with coauthors (2003) proposed. In the stylized model constructed here, the nega-

tive impact of coral on algae goes only via �sh consumption. A load of nutrients N

gives N new algae. Algae die naturally at a rate D. Fish consume algae at a rate

P per �sh. So the equation of motion for algae is:

dx

dt
= N �Dx� Pxy (2)

Algae shade the coral but they do not a¤ect the coral�s intake of nutrient very much.

Let Rz be the coral growth rate, 1I is the density of coral cover at which its growth

rate becomes reduced by 50%, W is light attenuation in the water column, S is the

shading coe¢ cient by algae and L is the coral loss:

�
z = Rz

z

1 + Iz + Sx+W
� Lz (3)

Following Segel (1972), the system (1-3) was rewritten in a dimensionless form,

which has the same dynamic properties and is easier to analyze. Let ux, uy and uz be

the units in which algae, �sh and coral are measured. Let A � x
ux
; H � y

uy
; C � z

uz
;

n = Y N
RyK

, d = D
Ry
, p = PY

Ry
, "r = Rz

Ry
, i = IF

Y Ry
, s = SK

Y
, w = 1 +W and "l = L

Ry
. We

obtain the system (4a-4c):

dA

dt
= n� dA� eAH (4a)

dH

dt
= H

�
1� H

A

�
� 1

C

H�

1 +H�
(4b)

dC

dt
= "r

C

iC + sA+ w
� "lC (4c)

" is a small (0 < " � 1) perturbation parameter that highlights the di¤erence

in the velocity between the system�s equations. (4a-4c) is expressed in the scale of

the fast variable: variations in coral biomass are very small compared to variations

unlimited.
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in the other variables. Rescaling (4a-4c) by t! �" yields instead the system in the

scale of the slow variable:

"
dA

d�
= n� dA� eAH (5a)

"
dH

d�
= H

�
1� H

A

�
� 1

C

H�

1 +H�
(5b)

dC

d�
= r

C

iC + sA+ w
� lC (5c)

In this form, which is in the standard form of singular perturbation theory, it is

obvious that unless the right hand side of (5a:5b) is large, A and H evolve much

faster than C. For " > 0; both systems are equivalent to SYS but in the limit "! 0

we obtain two essentially di¤erent systems: the fast system and the slow system

(see Table 1):

Table 1: Fast and slow systems

Fast Slow
dA
dt
= n� dA� eAH 0 = n� dA� eAH

dH
dt
= H

�
1� H

A

�
� 1

C
H�

1+H� 0 = H
�
1� H

A

�
� 1

C
H�

1+H�

dC
dt
= 0 dC

d�
= r C

iC+sA+w
� lC

The phase diagrams of these two subsystems have limited validity but studying

them separately and putting the solutions together may give a good global picture

of what happens. Ludwig, Jones and Holling (1978) used a similar technique to

study budworm outbreaks in spruce forests.

2.1 The fast processes

The graphs of functions u (H) = n
d+eH

and v (H)jC =
H(1+H�)

1+H��H��1
C

represent points

in the plane for which algae and �sh biomass respectively are invariant (dA
dt
= 0

respectively dH
dt
= 0). For H = 0; dH

dt
= 0 regardless of the value of A: It is easy to

verify that u is continuously decreasing and convex; u (0) = n
d
and lim

H!+1
u (H) = 0.

If C is large one can show8 that v is increasing in H until it reaches a local

maximum and then decreases to a local minimum before it starts increase again for

large values of H. If C is small (for some values of H we have 1+H�� H��1

C
< 0), v

has two vertical asymptotes: it is increasing and convex before the �rst asymptote.

Between the asymptotes, v is negative and concave and after the second asymptote,

v decreases to a local minimum and then increases again.

8See mathematical appendix B for the intuition for the shape of v:
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This means that in both cases u and v may intersect 2 or 4 times depending

on their location.9 Figure 1 shows the possible outline for the fast processes with

A

H

Figure 1: Alternative locations of u and v.

alternative locations of v in plain and u in dashed. The fat plain curve represents

a large coral reef biomass, the thin one a small. Note that the case with only

one stable coral dominated steady state is only possible if C is large (fat curve

intersecting once with the highest dotted curve in �gure 1). Figure 2 pictures the

phase diagram for the case with four steady states and relatively high C. The cases

with 2 steady states are straightforward to analyze and are not represented here.

Let H�
0 , H

�
1 , H

�
2 and H

�
3 denote the four steady states ordered in decreasing

value of the sustained �sh population. H�
0 is a boundary state in which �sh are

extinct. We can verify graphically that it is a saddle point and can only be reached

from points on the vertical axes: states with no �sh. We can also verify graphically

that H�
1 and H

�
3 are stable. H

�
1 represents a state with many algae and few �sh

in contrast to H�
3 ; which is a state with many �sh and few algae. State H

�
2 is a

saddle point. A curve, the separatrix, separates the two stable steady states�basins

of attraction � i.e. the regions in space from which any starting trajectory goes

asymptotically toward the same steady state (Kuznetsov 1995). The separatrix goes

through saddle point H�
2 and constitutes here the stable manifold of H

�
2 . Any initial

state to the right (left) of this curve evolves toward steady state H�
3 (H

�
1 ). So the

separatrix de�nes a threshold between coral-dominated and algae-dominated states.

Figure 2 illustrates some trajectories (thin curves with arrows) and the approximate

location of the separatrix (fat dashed curve).

9Of course at the bifurcation point they intersect in 2 points and are tangent to each other in
a third point.
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Separatrix

H

A

( )uA 0=&

0=H&

( )vH 0=&
*
1H

*
2H

*
3H

Figure 2: Phase diagram for the ecosystem

Changes in parameter values a¤ect the levels of the graphs of u and v and hence

the number of steady states. For relatively low (high) u compared to v, only H�
0

and H�
1 (H

�
3 ) remain. This occurs when nutrient load n or coral biomass C are

relatively low (high), or when death rate d or consumption rate e are relatively high

(low). When there are only two steady states, the interior state is the only stable

state.

2.2 The slow processes

In the time scale of the coral, algae and �sh are in steady state and only coral

change following the coral equation. In steady state C = 0 or C = 1
i

�
r
l
� sA� w

�
so the interior coral steady state is a linear decreasing function of algae A. Let �

represent the graph of this straight line. The interior steady state disappears when

A � r�wl
sl

� A. The maximum coral biomass is Cmax = 1
i

�
r
l
� w

�
. One can also

verify that the interior steady state is stable whereas the boundary state C = 0 is

unstable.

Let the ecosystem start in H�
3 , a unique interior steady state and let C decrease

along � so that v shifts upwards. For small changes in C the system tracks the

steady state H�
3 , which becomes gradually more algae-dominated. Eventually for

some value of C � C, two new steady states, H�
1 and H

�
2 , appear but the system
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remains around H�
3 . For C even smaller (� C), H�

2 and H
�
3 merge and disappear

and the system heads towards H�
1 instead.

Suppose now that C started to increase again, then H�
2 and H

�
3 would reappear

but because the system was near H�
1 it would remain there even for C 2

�
C;C

�
!

We would need C to increase back to C for the system to head back towards H�
3 .

This phenomenon, called hysteresis, occurs in lakes too � see Brock and Starrett

(2003) or Wagener (2003). Figure 3 illustrates the bifurcation points C and C. The

lower full curve represents v (H)jC and the upper full curve v (H)jC .

A

H

Figure 3: Threshold coral biomasses

Figure 4 summarizes coral dynamics showing the steady state level of coral as a

function of algae, and the number and nature of the possible corresponding steady

states for the fast variables.

3 The e¤ects of �shing

This paper does not consider �shing methods that a¤ect coral or algae biomass

directly. Thus �shing only enters the equation of motion for �sh. A positive harvest

term h10 represents �sh harvest. The equation of motion for �sh is then:

dH

dt
= H

�
1� H

A

�
� 1

C

H�

1 +H�
� h

For positive harvest, �shing implies that the curve representing dH
dt
= 0, now

called w (H) =
H2(1+H�)

(H�h)(1+H�)� 1
C
H�
, is always situated above v. The larger the harvest,

10See e.g. Clark. One could also model �shing as a function of e¤ort and some catchability
coe¢ cient but this would complicate the model without giving much new insight.
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C

maxC

C

C

A

*
3H

*
3

*
2

*
1 ,, HHH

*
1H

A

Figure 4: Coral biomass as a function of algae

the higher above w is. Figure 5 represents a phase diagram of the fast processes with

�shing. The non-�shing situation is drawn as the thinnest curves. The directions

of motion are the same as without �shing.

This �gure helps predict potential e¤ects of �shing. If �shing pressure is rela-

tively low, the phase diagrams with and without �shing are topologically equiva-

lent11. So for most initial points, the ecosystem would end up in a topologically

equivalent but more algae-dominated steady state. The separatrix would shift to

the right and the algae-dominated state�s basin of attraction increase. An increase

in �shing may also cause a bifurcation because w shifts upwards so that H�
3 , the

coral-dominated state, may disappear.12 The only remaining stable state would be

algae-dominated and would attract all trajectories with strictly positive �sh popu-

lations.

What are then the long-term e¤ects on the coral? Consider a steady state

with high coral biomass C�, low algae biomass and high �sh population (H�
3 ) and

introduce �shing. This results in a shift from the v curve to the w curve so the short-

term steady state becomes more algae-dominated. More algae harm corals and C�

decreases, so herbivores becomes more vulnerable to predation, which results in

an even more algae-dominated equilibrium. If this feedback e¤ect is large, even

little �shing may result in a bifurcation and a �ip towards an algae-dominated reef.

Hysteresis e¤ects observed in section 2.2 imply then that harvest must decrease

substantially to recover a coral-dominated state.

11See Kuznetsov (Kuznetsov 1995) for a de�nition of topologically equivalent dynamic systems.
12To simplify notation the steady states are called the same as in the non �shing situation.

9



Separatrix

H

A

( )uA 0=&

0=H&

( )vH 0=&
*
1H

*
2H

*
3H

( )wH 0=&

Figure 5: The e¤ects of �shing

To get an idea of potential harvest sizes assume that algae biomass adjusts

instantaneously to changes in the �sh biomass in the short run. This means that

we can replace for steady state algae biomass in the �sh equation and solve for

steady state harvest as a function of �sh stocks:

h (H) = H

�
1� H (d+ eH)

n

�
� 1

C

H�

1 +H�

Appendix C shows that for relatively high and relatively low coral biomasses, h is

concave with a unique maximum as �gure 6�s highest and lowest curve illustrate.

Lower coral biomasses imply lower curves. For intermediate coral biomasses, a

second lower peak appears at low value of �sh biomass. As coral decreases further

the high �sh biomass peak becomes lower than the low �sh biomass peak. For very

low values of coral only the low peak remains.

Figure 7 shows a double-peaked potential harvest curve with the thin arrows

representing the direction of motion of �sh biomass. Harvest below the curve in-

creases �sh stocks and harvest above decreases �sh stocks. If harvest is represented

by the fat straight line parallel to the H axes starting with a high �sh biomass,

the steady state would then be in H�
3 . If harvest increased marginally so that the

harvest line would shift upward in the direction of the fat arrow, then the ecosys-

tem would �ip and the only equilibrium harvest left would be algae-dominated H�
1 .
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h

H

High coral biomass

Figure 6: Potential harvest as a function of �sh stock

Thus far, �shing is exogenous. The remainder of the paper considers endogenous

harvest.

4 An optimally managed coral reef

Consider rational social planners who are knowledgeable of coral reefs�dynamics and

have in�nite time horizon. They seek to maximize social welfare by maximizing the

present value of discounted utilities from harvesting herbivores given the ecosystem�s

dynamics. Assume that the utility (U) derived from coral reef services is additively

separable so that U (h;A;H;C) = Uh (h) + U e (A;H;C), where Uh represent the

utility of harvest and U e represents the utility derived from coral reef species. The

problem to solve is:

max
h

1Z
0

U (h;A;H;C) e��tdt (6)

s:t:
dA

dt
= n� dA� eAH (7)

dH

dt
= H

�
1� H

A

�
� 1

C

H�

1 +H�
� h (8)

dC

dt
= "

�
r

C

iC + sA+ w
� lC

�
(9)

A � 0; H � 0; C � 0 (10)
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H

harvest

H

harvest *
3H

*
1H

Figure 7: Harvest dynamics

De�ne the current value Hamiltonian (H) using �A, �H and �C as shadow prices
for algae, �sh and coral stocks respectively:

H (A;H;C; h; �) = U (h;A;H;C) + �A (n� dA� eAH)

+�H

�
H

�
1� H

A

�
� 1

C

H�

1 +H�
� h

�
+�C"

�
r

C

iC + sA+ w
� lC

�
Pontryagin�s maximum principle states that the necessary condition for an optimal

harvest and the equation of motion for herbivore shadow price are

dUh

dh
� �H

d�H
dt

= �AeA� �H

�
1� 2H

A
� 1

C

�H��1

(1 +H�)2
� �

�
� @U e

@H

Assuming an interior solution and replacing for optimal harvest, Pontryagin�s nec-

essary conditions for an optimal harvest form a six-dimensional dynamic system

(11).

dA

dt
= n� dA� eAH (11)

dH

dt
= H

�
1� H

A

�
� 1

C

H�

1 +H�
� h
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dC

dt
= "

�
r

C

iC + sA+ w
� lC

�
d�A
dt

= �A (�+ d+ eH)� dUh

dh

H2

A2
+ �C

"rCs

(iC + sA+ w)2
� @U e

@A

dh

dt
=

1
d2Uh

dh2

�
�AeA�

dUh

dh

�
1� �� 2H

A
� 1

C

�H��1

(1 +H�)2

�
� @U e

@H

�
d�C
dt

= �C

�
�� "r (sA+ w)

(iC + sA+ w)2
+ "l

�
� dUh

dh

�
1

C2
H�

1 +H�

�
� @U e

@C

4.1 The fast variables dynamics

In the short run "! 0 implying that coral is in steady state and the shadow price

for coral does not a¤ect the other variables so the managed coral reef follows the

dynamics of system (12):

dA

dt
= n� dA� eAH (12)

dH

dt
= H

�
1� H

A

�
� 1

C

H�

1 +H�
� h

d�A
dt

= �A (�+ d+ eH)� dUh

dh

H2

A2
� @U e

@A
dh

dt
=

1
d2Uh

dh2

�
�AeA�

dUh

dh

�
1� �� 2H

A
� 1

C

�H��1

(1 +H�)2

�
� @U e

@H

�
Appendix D shows that under the assumption that utility doesn�t depend on algae

and �sh biomasses (@U
e

@A
= @Ue

@H
= 0)13, this controlled ecosystem may have 0, 1 or 3

steady states depending on parameter values and on the level of coral reef biomass.

The number of steady states and the levels of �sh, algae and harvest depend on

natural parameters only, not on the utility function. The shadow price for algae

is the only variable that depends on utility, through a term involving the marginal

utility of harvest. If this assumption did not hold, the number of steady states

would depend on @Ue

@A
and @Ue

@H
. Appendix E veri�es the classical result that steady

states of the system are either saddle points or totally unstable.

13This assumption is reasonable because the �sh that are valuable for harvest are not necessarily
the �sh that are valuable for contemplation in the coral reef. Also it should not be too restrictive to
assume that algae do not have any value per se, their only value could very well be as a necessary
component for the ecosystem to work.
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4.2 The slow variables dynamics

To account for long run dynamics only, the system (13) is rewritten using a new

time unit: t! �" . This gives:

"
dA

d�
= n� dA� eAH (13)

"
dH

d�
= H

�
1� H

A

�
� 1

C

H�

1 +H�
� h

dC

d�
= r

C

iC + sA+ w
� lC

"
d�A
d�

= �A (�+ d+ eH)� U 0 (h)
H2

A2
+ �C

"rCs

(iC + sA+ w)2
� @U e

@A

"
dh

d�
=

1
d2Uh

dh2

�
�AeA�

dUh

dh

�
1� �� 2H

A
� 1

C

�H��1

(1 +H�)2

�
� @U e

@H

�
"
d�C
d�

= �C

�
�� "r (sA+ w)

(iC + sA+ w)2
+ "l

�
� U 0 (h)

�
1

C2
H�

1 +H�

�
� @U e

@C

Letting the perturbation parameter " go to zero we obtain the long run dynamics in

the ecosystem. Only the coral is evolving following its natural motion. Note that the

last equation can be solved for the coral shadow price: ��C =
�
U 0(h)
C2

H�

1+H� +
@Ue

@C

�
.

The discounted shadow price of coral equals the marginal value of coral for increased

harvest thanks to predator protection (U
0(h)
C2

H�

1+H� ) plus the marginal utility of coral

itself. The shadow price for coral does not a¤ect any other variable in the long

run so we can just skip the last equation and obtain a system of one di¤erential

equation for coral (14) and the reduced system (12) from section (4.1) in steady

state.
dC

dt
= r

C

iC + sA+ w
� lC (14)

The coral dynamics were analyzed graphically in section 2.2. These results still

hold but now that the ecosystem is exploited, the steady state levels of the fast

variables di¤er implying that the bifurcation points C and C are not the same.

To see why, consider a projection of the four dimensional phase diagram for the

fast variables on the (A;H) plane. The graph of function u (H) = n
d+eH

can still

represent the nullcline for algae but the nullcline for �sh is instead the graph of

function w (H)jC =
H2(1+H�)

(H�h)(1+H�)� 1
C
H�
, which lies always above v for any given �sh

and coral biomass level if harvest h is positive. This means that w (H)jC > v (H)jC
and w (H)jC > v (H)jC so the exploited ecosystem reaches the bifurcation points

for higher levels of coral biomass (because w (H)jC is decreasing in C). This result
holds for any speci�cation of the utility function but a given utility function will
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correspond to a given level.

So coral reef �sheries, even if they are optimally undertaken, �ip at higher coral

reef biomasses. This means that even optimal �sheries lead to loss of resilience

because, compared to a pristine reef, smaller shocks can make an exploited coral

reef �ip toward an algae-dominated state. Furthermore the speci�cation for the

utility function will determine how much resilience is lost because it determines the

level of the curve w (H)jC above v (H)jC through the harvest term.

5 Management strategies

For a long time, poorly developed technology, high costs and relatively low demand

restricted coral reef �sheries, so that �shing pressures high enough to cause a bi-

furcation were never pro�table. A logistic di¤erential equation for �sh was then

enough to approximate coral reef dynamics and �nd an optimal management strat-

egy. Today, better technologies, higher demand and lower costs have increased

�shing pressure on coral reefs a lot. Many coral reefs may have passed the �rst

bifurcation point C and are then close to shift to an alternative stable state. In

such a situation, accounting for �sh dynamics only is not enough. Social planners

can no longer rely on simple rules like marginal cost should equal marginal ben-

e�ts from �shing. To �nd the optimal management strategy, the social planners

must calculate all future costs and bene�ts that each potentially optimal strategy

would generate. This is not realistic because in practice gathering knowledge about

these costs and bene�ts would require a huge amount of resources and also most

of these costs and bene�ts are uncertain. Highlighting the fast and slow dynam-

ics in a coral reef gives a lot of useful information that could help �nd satisfying

management practices. This section shows how knowledge of slow processes can be

useful for coral reef management. In particular knowledge of slow processes seems

particularly useful to help detect thresholds and �nd new ways of controlling the

system.

5.1 Detect thresholds

Study of the slow dynamics in sections 2.2 and 4.2 show that coral reefs can tres-

pass not one but three di¤erent thresholds. The separatrix between the basins of

attraction of coral-dominated and algae dominated states is the threshold that de-

cides whether the coral will end up in one state or the other. But the bifurcation

points form also some kind of thresholds. To see how consider a situation with one
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coral dominated state, the ecosystem can never �ip before the bifurcation point C

is trespassed. This point marks some kind of frontier between situations where the

reef can �ip and situation where it cannot. If C is trespassed, the reef can very

well stay coral-dominated for a very long time: the separatrix can only be crossed

if an external chock occurs. This was observed in practice when reefs �ipped after

unusual events such as violent hurricanes and �sh pests�outbreak. If no external

chock occurs, the reef must pass bifurcation point C to �ip so this de�nes still

another threshold.

In practice, social planners do not have all information necessary to make the

best choice but they probably have some kind of clue of whether it would be best

to keep the reef coral-dominated or algae-dominated. Trying to detect ecosystem

thresholds would then be a way of acquiring enough information to enable satis-

fying management tactics. If social planners know the long run dynamics and use

that knowledge in management, they obtain long run limiting coral reef biomasses

that correspond to their short run management tactics. Comparing these to the

threshold biomasses C and C can help them diagnose the reef before a �ip has

occurred.

A �ip to an algae dominated state could occur in two situations: either if the

system is between C and C and an external shock pushes it on the other side of

the separatrix or if the system crosses the bifurcation point C. Obviously these

two ways of �ipping di¤er a lot from each other and might be avoided or cured in

di¤erent ways.

It seems that much of the research on threshold detection has aimed to detect

either the separatrix or the point C, which are points at which the system really

shifts. Such threshold detection is problematic because one typically needs to shift

the system to detect the threshold, which is precisely what planners want to avoid.

Detecting point C instead would give tremendous information to the planners with-

out implying changes that are irreversible or hardly restorable. They would know

whether the reef is safe or whether it is a ticking bomb that may �ip at any time.

Detecting thresholds is problematic. Problems arise from the fact that thresh-

olds are typically not �xed so trying to detect them might lead to resilience loss

and increased �ipping risks. Planners need to �nd good testing methods, which

involve controls that are easy to adapt and relatively cheap as well as knowledge

about suitable variable to monitor. The phase diagrams and �gure 7 indicate that

monitoring the direction of motion of herbivorous �sh stocks could be a way to go.

Around the separatrix the direction of motion change and if social planners can

monitor that, they may be able to reverse a shift before it has gone too far. De-
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tecting bifurcation point C seems more problematic because this bifurcation goes

unnoticed in the neighborhood of the coral dominated state, the radical changes

occur around the separatrix and the algae dominated state.

5.2 Find new controls

So far, �sh harvest was the only way to control the coral reef. In practice other

controls are available. Knowledge about ecosystem dynamics provides planners with

ideas about new controls that may be useful. In the ecosystem model at hand, coral

seems di¢ cult to control in practice. In Florida, old dumped vessel carcasses build

arti�cial reefs that coral have started to colonize but such measures can only help

increase the number of areas where coral can develop. They cannot help restore

an algae-dominated reef because no coral could survive or colonize as long as algae

dominate.

Controlling algae may be easier and useful given their important role. McClana-

han with coauthors (2000) experimented large-scale algae removal on Glover Reef

in Belize. It turned out to be very labor consuming and might thus not be a good

control alternative.14 One may instead try to limit the nutrient load from land.

This would probably be a cheaper alternative at least for regions where sewage

treatment has not developed very much yet. Nutrient cleaning could be a cheaper

way than lower harvest to obtain a marginal increase in �sh biomass.

Intuitively, a combination of several available controls should increase the basin

of attraction of the coral-dominated state because that may increase the number

of initial states for which remaining in the coral-dominate state is cheap enough

to be optimal. To see why consider a social planner who use harvest and nutrient

cleaning (k) to control a reef. The problem is:

max
h;k

1Z
0

U (h; k; A;H;C) e��tdt

s:t:
dA

dt
= n� k � dA� eAH

dH

dt
= H

�
1� H

A

�
� 1

C

H�

1 +H�
� h

dC

dt
= "

�
r

C

iC + sA+ w
� lC

�
A � 0; H � 0; C � 0

14Personal communication with Miriam Huitric one of the authors.
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The term �k in the equation for algae is the only di¤erence with the problem
treated in section 4. So as soon as it is optimal to clean (k > 0), algae biomass

will be lower in steady state for a given �sh biomass and hence �sh biomass will

be higher in steady state. Consider for example a situation in which the optimal

�shing pressure is such that the ecosystem is almost at the threshold, about to �ip.

If social planner start to control nutrient in�ow and if this control is cheaper on the

margin than the social cost of reducing �sh harvest, then, controlling nutrient will

help keep a high level of harvest while leaving the proximity of the threshold.

6 Conclusions

This article deals with coral reefs but the same kind of mechanisms should be useful

for any ecosystem where slow variables play a role, like shallow lakes for example.

Analyzing slow and fast processes in coral reefs certainly gives many answers on

the reef�s dynamics and on di¤erent ways to manage them.

This article produces coral reef model that highlights slow and fast dynamics.

It shows how �shing a¤ects threshold location in reefs: even optimized �sheries

make the reef more prone to shift to an algae-dominated state. In the natural

and in the exploited ecosystem, changes in the ecosystem dynamics occurred before

the system had shifted to a less favorable state. This insight is used to discuss

how planners could better manage the reef and maybe get warning signals that the

system is about to shift. Knowledge of slow and fast dynamics also gives indications

about other ways of controlling the reef than �shing. Nutrient control was used as

an example but a better knowledge of ecosystem dynamics could give information

about other kind of relevant control that managers have not thought about yet.

Finding a good way to manage ecosystems with threshold e¤ects is still not

obvious though. There are many potential di¤erent solutions to such management

problem but none of them stands alone as the best one. It seems more than ever

that social planners will have to pick management strategies for such ecosystems

after having acquired as much knowledge as possible about the ecosystem. Some-

times, applying marginal rules may still be the best way to go. In other situations,

managing other variables in addition to harvest or creating protections areas may

be better.
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A System transformation

Let ux, uy and uz be the units in which algae, �sh and coral are measured. Let u�
be the time unit and let A � x

ux
; H � y

uy
; C � z

uz
; t � �

u�
. The system (1-3) can

be rewritten:

dA

d�
=

dx

d�

d�

dt
=
u�
ux
N � u�DA� u�PAHuy

dH

d�
=

dy

d�

d�

dt
= u�RyH

�
1� Huy

KAux

�
� u�
uy

F

Cuz

H��
Y
uy

��
+H�

dC

d�
=

dz

d�

d�

dt
= u�Rz

C

1 + ICuz + SAux +W
� u�LC

Choose ux = K
Y
, uy = Y , uz = F

Y Ry
and u� = 1

Ry

dA

d�
=

Y N

RyK
� D

Ry

A� PY

Ry

AH

dH

d�
= H

�
1� H

A

�
� 1

C

H�

1 +H�

dC

d�
=

Rz

Ry

C

1 + IC F
Y Ry

+ SAK
Y
+W

� L

Ry

C

Let n = Y N
RyK

, d = D
Ry
, p = PY

Ry
, "r = Rz

Ry
, i = IF

Y Ry
, s = SK

Y
, w = 1 +W , t = � and

"l = L
Ry
we obtain the ecosystem equations:

dA

dt
= n� dA� pAH

dH

dt
= H

�
1� H

A

�
� 1

C

H�

1 +H�

dC

dt
= "r

C

iC + sA+ w
� "lC

B Phase diagram characteristics

Note that v (H) = H

1� 1
C
H��1
1+H�

. Let � (H) = H��1

1+H� . It is easy to verify that � has

two �x points at H = 0 and H = �
p
� � 1 and two in�ection points at H =

�

r
1
4
�
�
3 + � �

p
6� � 7 + �2

�
. � is increasing between 0 and �

p
� � 1 and decreasing

for largerH with lim
H!+1

� (H) = 0. Figure 8 shows the graph of �.So v (H) = H

1��(H)
C

where � (H) has the shape depicted in �gure 8. This means that for very small and

very large values of H, v (H) behaves similarly to H. For values in between these
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a(H)

H

Figure 8: � (H)

two extremes, there are obviously two cases:

1. For all values of H, C > � (H). In that case it is obvious that v (H) > H for

all possible values of H. Furthermore, � increases for low values of H so v

must be increasing as well. Eventually, � reaches its maximum and starts de-

creasing implying that v (H) is not increasing as quickly and eventually starts

decreasing as well until � (H) becomes so small that the term H dominates

and v (H) starts increasing again towards the asymptote H. In this case the

graph of v will look like in �gure 9 with the asymptote H in fat.

v(H)

H

Figure 9: v with high C

2. For some values of H, C < � (H). This means that there must be some

values of H such that 1� �(H)
C
= 0 and because � is single-peeked, there can

be at most two such values. For those values the graph of v has obvioulsy two

vertical asymptotes and in between those asymptotes, v must be concave and

negative. Outside the asymptotes the graph of v is similar to the case with

no asymptotes. Figure 10 shows the graph of v in this case.
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v(H)

H

Figure 10: v with low coral

C Characteristics of potential harvest

h = H

�
1� H (d+ eH)

n

�
� 1

C

H�

1 +H�

@h
@H
= 1� 1

C
� H��1

(H�+1)
2 � H

n
(2d+ 3He) : Let � (H) = 1� 1

C
� H��1

(H�+1)
2 and  (H) =

H
n
(2d+ 3He). Any extremum of h must be found at the intersection of � and .

One can show that @�
@H

= � 1
C
�H� �(1�H

�)�(1+H�)
H2(1+H�)

3 > 0 , H� > ��1
(1+�)

. Because

H must be positive this implies that @�
@H

> 0 , H >
�

��1
(1+�)

� 1
�
. So � (0) = 1

and � is decreasing for H <
�

��1
(1+�)

� 1
�
and reaches a minimum at �

��
��1
(1+�)

� 1
�

�
=

1 � 1
C

�( ��1
(1+�))

��1
�

( 2�
(1+�))

2 before it starts increasing for larger values of H; limH!+1 � =

1. @2�
@H2 = ��H� �2�4�2H�+H2��2�3�+3H2��+2+4H�+2H2�

CH3(1+H�)
4 implying that @2�

@H2 > 0 ()q�
�2 � 1

��2p�2�1+�
p
3

�
(�2+3�+2)

> H� >
q�

�2 � 1
��2p�2�1��

p
3

�
(�2+3�+2)

. Also  is always posi-

tive and monotonously increasing from 0 for any positive value ofH. So � and  can

intersect 1 or 3 times. For relatively large C,  is located high above the peak of �

and the curves intersect once implying that h has one maximum for relatively high

values of H. For relatively small values of C, the peak of � is located high above

 and the curve intersect once implying that h has one maximum for relatively low

values of H. For intermediate values of C; the curve intersect three times implying

that h has two local maxima and a local minimum in between them. For given

parameter values when C decreases a second to begin with lower
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D Number of steady states of the exploited sys-

tem in the short run

The exploited system (12) has steady states that solve:

A =
n

d+ eH

h = H

�
1� H

A

�
� 1

C

H�

1 +H�

�A =
1

�+ d+ eH

�
dUh

dh

H2

A2
� @U e

@A

�
dUh

dh

�
H2 (d+ eH)

(�+ d+ eH)n
e�

�
1� �� 2H (d+ eH)

n
� 1

C

�H��1

(1 +H�)2

��
=

@U e

@H
+

en

(�+ d+ eH) (d+ eH)

@U e

@A

Finding solutions to this system is di¢ cult so to come further we assume that utility

did not depend on algae and �sh biomasses. This exploited system has steady states

that solve:

A =
n

d+ eH

h = H

�
1� H

A

�
� 1

C

H�

1 +H�

�A =
U 0 (h)

�+ d+ eH

H2

A2

0 =
H2 (d+ eH)

(�+ d+ eH)n
e�

�
1� �� 2H (d+ eH)

n
� 1

C

�H��1

(1 +H�)2

�
(a)

One can easily see that A; h and �A are uniquely determined as soon as H is

given so the number of steady states of this system must correspond to the number

of solutions inH to equation (a). Furthermore the shadow price for algae is the only

variable that depends on the form of the utility function in steady state. The other

variables will have the same level no matter the utility function as long as utility

only depends on harvest. Equation (a) does not depend on the utility function and

transforms into

1� 1

C

�H��1

(1 +H�)2
=

H2 (d+ eH)

(�+ d+ eH)n
e+

2H (d+ eH)

n
+ �

An analytical solution is di¢ cult to �nd but this equation can be analysed
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graphically: the steady state values of H are found at the intersection of the

graph of � (H) = 1 � 1
C

�H��1

(1+H�)
2 and  (H) = H2(d+eH)

(�+d+eH)n
e + 2H(d+eH)

n
+ �. Note

that @ 
@H

= eH 2d(�+d)+(4d+3�)eH+2H2e2

(�+d+eH)2n
+ 2(d+2eH)

n
> 0 for any H � 0; and @�

@H
=

� 1
C
�H� �(1�H

�)�(1+H�)
H2(1+H�)

3 > 0, H� > ��1
(1+�)

. Because H must be positive this implies

that @�
@H

> 0 , H >
�

��1
(1+�)

� 1
�
. So � (0) = 1 and � is decreasing for H <

�
��1
(1+�)

� 1
�

and reaches a minimum at �
��

��1
(1+�)

� 1
�

�
= 1� 1

C

�( ��1
(1+�))

��1
�

( 2�
(1+�))

2 before it starts increas-

ing for larger values ofH; limH!+1 � = 1.
@2�
@H2 = ��H� �2�4�2H�+H2��2�3�+3H2��+2+4H�+2H2�

CH3(1+H�)
4

implying that @2�
@H2 > 0()

q�
�2 � 1

��2p�2�1+�
p
3

�
(�2+3�+2)

> H� >
q�

�2 � 1
��2p�2�1��

p
3

�
(�2+3�+2)

.

Also we have  (0) = � and @2 
@H2 = 2e

7d�2+8d2�+2�3+(�+d)29eH+3d3+3H3e3+9e2H2(�+d)

(�+d+eH)3n
> 0.

This implies that � and  can intersect one or three times so we may have one or

three candidate steady states. There is a bifurcation when the two curves are tan-

gent and the system goes from one to three steady states. The number of steady

states depends on the parameter values and there are three di¤erent possibilities:

1. If C is large, � (H) � 1 for all values of H because the second term becomes

very small. In that case there will be one steady state for most values of the

other parameters. Note that high values of e and d and low values of n make

 steeper. High discount rates make  shift up and become �atter.
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Figure 11: Graph of  and � with high coral biomass

2. If C is small, � is not approximately equal to one everywhere. Then the

number of steady states depends on parameter values. If the parameter values

imply that  is relatively low and �at there is one steady state with relatively

high algae stock. If the parameter values imply that  is high and steep there
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is also only one steady state with low algae stock or maybe even none if the

discount rate is high. For values in between there may be three steady states

implying that there are bifurcations.
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Figure 12: Graph of � and several alternatives of  for low coral biomasses

E Dynamics around steady states in the short

run

The Jacobian of the system (12) is150BBBBB@
	 H2

A2
2dU

h

dh
H2

A3
� @2Ue

@A2
1

d2Uh

dh2

�

�eA � � �

0 0 ��	 eA
d2Uh

dh2

0 �1 �d2Uh

dh2
H2

A2
�� �

1CCCCCA
Where � = �Ae� dUh

dh
2H
A2
� @2Ue

@A@H
; � = 1� 2H

A
� �

C
H��1

(1+H�)
2 ;

� = �
dUh

dh
d2Uh

dh2

�
� 2
A
� �(��1)

C
H��2�H2��2

(1+H�)
3

�
�

@2Ue

@H2

d2Uh

dh2

; 	 = � (d+ eH)

Given the appearance of the diagonal of this Jacobian, it is obvious that if � is

an eigenvalue of this Jacobian then ��� must be an eigenvalue as well. This result
was expected due to the results in Birkho¤ (1927), Kurz (1968) and Crépin (2002).

So any steady state of this system is either a saddle point or is completely unstable.

15Assuming d3Uh

dh3 = 0
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F Second order conditions

Here we use Arrow�s su¢ ciency conditions, which state that the maximized Hamil-

tonian of the system must be concave with respect to the state variables. In the

fast variables system this amounts to

H (A;H:C; h; �) = U (h;A;H;C) + �A (n� dA� eAH)

+
dUh

dh

�
H

�
1� H

A

�
� 1

C

H�

1 +H�
� h

�
being concave with respect to (A;H). To check that we must calculate the Hession

matrix for the Hamiltonian:

 
B D

D F

!
. Where A = @2Ue

@A2
� 2dUh

dh
H2

A3
; B = @2Ue

@H@A
�

�Ae+ 2
dUh

dh
H
A2
and F = @2Ue

@H2 � dUh

dh

�
2
A
+ �H��2

C
(��1)�(�+1)H�

(1+H�)
3

�
The hamiltonian is concave if (�1)rDr � 0 for r = 1; 2, whereDr are the leading

principal minors of order r of the hessian matrix. This is equivalent to

�A � 0 and
AF �B2 � 0
The �rst condition is always satis�ed if utility is increasing in harvest and con-

cave in algae �two reasonable assumptions. The second condition is only satis�ed

for certain values of �sh biomasses. If @U
e

@A
= @Ue

@H
= 0 and dUh

dh
6= 0 this last condition

is:

2H
2

A3

�
2
A
+ �H��2

C
(��1)�(�+1)H�

(1+H�)
3

�
�
�
2 H
A2
� �A

dUh

dh

e

�2
� 0

, 2�H� (��1)�(�+1)H�

(1+H�)
3 � A3C �A

dUh

dh

e

�
�A
dUh

dh

e� 4 H
A2

�
De�ne � (H) = A3C �A

dUh

dh

e

�
�A
dUh

dh

e� 4 H
A2

�
and � (H) = 2�H� (��1)�(�+1)H�

(1+H�)
3

Recall that in an equilibrium we must have

A =
n

d+ eH

�A =
dUh

dh

�+ d+ eH

H2�
n

d+eH

�2 (15)

So � (H) = �CH3e (d+ eH) 3eH+4�+4d
(�+d+eH)2n

; which is negative, decreasing in H and

concave with a maximum � (0) = 0. One can easily verify that � (H) is de-

creasing in H if 1
2(�+1)

�
4� � 2

p
3�2 + 1

�
� H� � 1

2(�+1)

�
4� + 2

p
3�2 + 1

�
and

increasing otherwise. Furthermore one can show that � increases from 0 to a max-

imum at
�

1
2(�+1)

�
4� � 2

p
3�2 + 1

�� 1
�
; then decreases and reaches the value 0 at
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H =
�
��1
�+1

� 1
� , decreases further towards a minimum at

�
1

2(�+1)

�
4� + 2

p
3�2 + 1

�� 1
�

and then increases for any large value of H. In the limit, � approaches 0 when H

becomes very large. Figure 13 shows the graph of the projection of the curves � (H)

and � (H).

y

H

Figure 13: Graph of � and �
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