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Abstract

This paper develops a theory for pricing ecological resilience in a dynamic economy-

environment system. Following Holling (1973), we de�ne resilience as the maximal

perturbation that the system can absorb without �ipping into an undesirable state.

Based on a multisector growth model, we derive the shadow price of resilience with

respect to the probabilities that the system will �ip in the future. We also expore the

implications of di¤erent stochastic processes characterizing the resilience stock. The

theory is illustrated by a numerical example from southeast Australia
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1 Introduction

The recent decades have witnessed increasing awareness of the importance of ecosys-

tem services for sustainable development (cf Perrings, 1995; Dasgupta and Mäler,

2000; Dasgupta and Mäler, 2001; Arrow et al, 2003). One of the services that has

interested both ecologists and economists is the ecosystem�s resilience and its role in

dynamic welfare analysis. By resilience in this paper is meant the capacity for an

ecosystem to cope with disturbances without shifting from a normal into a qualita-

tively di¤erent state which is less undesirable (Holling, 1973; Perrings and Walker,

1997; Carpenter et al, 2001; Walkers et. al., 2004). A system with very low re-

silience may simply lose its stability and functioning by a small perturbation while

that with higher resilience may absorb larger shocks without any dramatic changes.

This implies that policies that improve the resilience of a system should promote

sustainability and improve human well-being. However, since resilience is typically

not traded in the marketplace, there is no price information available to indicate its

value. How to cast resilience in the framework of social cost-bene�t analysis and

sustainability measurement is, therefore, not a trivial issue.

Nevertheless, several attempts have been made along this direction in the recent

literature. Serrao et. al. (1996) study sustainability and resilience informally in the

context of the Amazonian upland ecosystems. The idea is that when the state of

nature undergoes a change across a threshold, which lies beyond a society�s ability

to respond, the current social welfare may not be supported. Gunderson (2001)

discusses the loss of ecological resilience in two ecosystems in Florida, one on the

species loss in a wetland area and the other on the die-o¤s of seagrass in a shallow

Bay. With a bu¤er of resilience in the systems, adaptive environmental assessment

and management actions can provide robust responses to the loss. A more formal

model of resource management subject to resilience e¤ects is developed by Perrings

and Walker (1997). They are concerned with the optimal management of rangelands

in Australia where grazing a¤ects �re risks which in turn determines the composition
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of species and the functioning of the ecosystem.

Although the concept of ecological resilience is taken in to account in the above-

mentioned and a number of other studies (cf Norton, 1995; Sche¤er et al, 2001;

Trosper, 2002; Ekins et al., 2003), it is more or less regarded as an ancillary measure

along the side of the "genuine" capital forms such as natural, physical and human

capital stocks. This may undermine the role of resilience in a more comprehensive

dynamic welfare analysis. The objective of this paper is to �ll the gap by treating

resilience as an asset, a stock variable, in its own right. For a tropical ecosystem,

for example, a keystone species may play a vital role for the system�s functioning

and stability. When its biomass undergoes below a threshold level, an undesirable

structural change may occur. In this case, the excess of the species�biomass over

its minimum viable population level may constitute a resilience stock. The larger

the excess is, the less likely that an external shock such as a sudden climatic change

would drive down the keystone species to extinction, and thereby retain the normal

�ow of services from the ecosystem. In other words, the probability for the system

to �ip from the currently preferred state to an alternative one - an undesirable state

- would be smaller (ceteris parabus) for a higher resilient system. Following this

reasoning, we will attempt to price ecosystem resilience according to its marginal

contribution to social well-being by its role in maintaining ecosystem functioning and

stabilities. When the shadow price of the resilience stock is assessed, it will be possible

to integrate the value in cost-bene�t analysis and sustainability assessment.

The remaining part of the paper is structured as the following. In section 2, we

develop a capital-theoretical model with the resilience stock considered as a stock

variable. An exact formula for pricing the resilience stock is developed and its impli-

cation for dynamic welfare measurement is also explored. Section 3 and 4 provide an

essential link between the �ip probabilities in space and over time. The link is based

on a generalized Ito process for the resilience stock, which is required as an input in

the pricing formula. Section 5 illustrates the theory by an example from Australia
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on the value of resilience in an ecosystem. Section 6 sums up the study.

2 The capital-theoretic model

Consider an economy-environment system with a number of conventional capital

stocks, including human resources, natural and environmental assets, with initial

values K(0) = K0 > 0 at time t = 0. In addition, there is a pure resilience stock

X(t) following a dynamic process over time t � 0, starting from an initial stock

X(0) = X0 . We assume two possible regimes, a normal one with the resilience stock

X(t) greater than its threshold value2 ~X, i.e. X(t) > ~X, associated with a normal

stream of utility �ows, and a disturbed regime following a �ip of the ecological system

with X(t) < ~X. Initially, we have the normal regime such that X0 > ~X. However,

as time goes, there is a probability at each point in time t such that the system �ips

from the normal to a disturbed regime. The �ip probabilities over time will depend

on the properties of the underlying stochastic process X(t).

For the moment, let us simply assume that the probability density for a �ip

at time s > 0, from the normal regime to a disturbed, an undesirable regime, be

�(X0; s). The cumulative probability for a �ip over a time interval [0; t] becomes then

F (X0; t) =
R t
0
�(X0,s)ds, with properties F (X0; 0) = 0 and limt!1 F (X0; t) = 1. The

corresponding probability for the normal regime to survive over the interval [0; t],

conditional on a normal regime at the initial date 0 can be expressed as S(X0; t) =

1 � F (X0; t). With a given stream of �ip risks, we will �rst derive an expression

for the expected intertemporal welfare, and then study the implicit value of the

resilience stock. Conditional on the normal regime, a governing rule �1 as de�ned

in Arrow et al. (2003) would map the initial condition K0 into a stream of vector-

valued consumptions C1(t) and capital stocks K1(t) such that C1(t) = F(K0; �1; t)

and K1(t) = G(K0; �1; t), t 2 [0;1), where F and G are two di¤erent vector-

2Without loss of generality, we can always normalize the resilience stock to be X(t) � ~X such

that the normalized threshold is identically 0:
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valued functions. If the system �ips at time s 2 [0;1) with structural changes,
then consumption and capital stocks henceforth would follow an alternative path

governed by an adapted rule �2 such that C2(t) = F(K(s); �2; t � s) and K2(t) =

G(K(s); �2; t� s), for t 2 [s;1).
Preferences are represented by a time-invariant utility function V (C(t);K(t)),

which satis�es all regularity conditions. Note that we allow capital stocks to enter

the utility function as some environmental assets may generate amenity values. For

notational ease, we denote the instantaneous utility at time t conditional on the

normal regime by U1(t) = V (C1(t);K1(t)), and that conditional on the disturbed

regime by U2(t) = V (C2(t);K2(t)) for all t 2 [0;1). Obviously, U1(t) > U2(t) for

any point in time t.

Suppose that the system �ips at a known date s, then the intertemporal welfare

at time t = 0 would be

W0(s) =

sZ
0

U1(t) exp(�rt))dt+
1Z
s

U2(t) exp(�rt)dt (1)

where r denotes the rate of pure time preference. For stochastic �ipping dates, the

expected intertemporal welfare at time t = 0 can be expressed by

E(W0) =

1Z
0

�(X0,s)W0(s)ds =

1Z
0

W0(s)dF (X0,s) (2)

By integrating (2) by parts and making use of (1), the expected intertemporal welfare

at time t = 0 can now be written as

E(W0) = W0(s)F (X0,s) j10 �
1Z
0

F (X0; s) [U1(s)� U2(s)] exp(�rs)ds (3)

=

1Z
0

U1(s) exp(�rs)ds�
1Z
0

F (X0; s) [U1(s)� U2(s)] exp(�rs)ds

where the second equality follows from the properties of cumulative distribution func-

tion F (X0,s) and the boundedness of the utility function V (:). While the �rst integral
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on the second line of (3) represents the "normal" wealth, the second integral mea-

sures the expected loss in intertemporal welfare due to the risks of future �ips. An

alternative expression of (3) is

E(W0) =

1Z
0

[S(X0; s)U1(s) + F (X0; s)U2(s)] exp(�rs)ds (4)

where S(X0; s) = 1� F (X0; s) denotes the survival probability of the normal regime

from time t = 0 to s, conditional on an initial normal state X0 > ~X. The expression

(4) corresponds to the present discounted value of future expected utilities - the

weighted average of two extreme utility streams, one as the perfectly normal stream

and the other as the fully disturbed utility stream over an in�nite future. Note

that we have converted the expression involving two subsequent time periods to an

expression of a linear combination of two parallel streams due to the stochastic �ip

dates.

Now, what is the shadow value of the resilience stock X0 at the initial date t = 0?

By applying the Leibniz rule, we obtain the following expression for this shadow value

q(0) =
@E(W0)

@X0

=

1Z
0

@S(X0; s)

@X0

[U1(s)� U2(s)] exp(�rs)ds (5)

Since the resilience stock is de�ned in a positive way, we expect @S(X0;s)
@X0

� 0, i.e.
the survival probability up to a given date s is a non-decreasing function of the initial

resilience stock at the initial date. Then, by the assumption U1(s) � U2(s) � 0 for

all s 2 [0;1), we have q(0) � 0, i.e. the marginal contribution of each unit of the

resilience stock is non-negative.

For dynamic welfare analysis, it proves convenient to de�ne the expected wealth

at the initial date as a function of the capital stocks including the resilience stock

such that Ŵ (K0; X0) = E(W0) as in (4). The change in the the value of this measure

7



over an in�nitessimal time interval [0; dt] is

dŴ (K0; X0) =
@Ŵ (K0; X0)

@K0

dK+
@Ŵ (K0; X0)

@X0

dX

= P(t)dK(t) jt=0 + q(t)dX(t) jt=0 (6)

where P(0) = @ŴK0; X0)=@K0 denotes the vector of shadow prices for the conven-

tional capital stocks. Note that this price vector does not correspond to shadow prices

following the hypothetical "perfectly normal path". Thus, it is possible to decompose

P(0) into two parts, one as the perfectly "normal" shadow prices and the other as the

expected losses, but we will not pursue this issue further here. According to Arrow

et al (2003), if the change in their inclusive wealth, i.e. the genuine investment, is

positive, i.e. dŴ (K0; X0) > 0, then welfare over the short time interval [0; dt] is

increasing, or the initial welfare is sustainable.

3 Flip probabilities in space and time

Now, we will relate the cumulative probability F (X0; s) or equivalently the survival

function S(X0; s) to the dynamic process X(t). Without loss of generality, we assume

that X(t) follows a stochastic process and the threshold ~X remains constant, though

there are situations for which it may be more realistic to assume the actual paths

X(t) as deterministic while the threshold ~X is stochastic over time. This latter case

can be readily handled by normalizing the resilience stock by R(t) = X(t)� ~X with

a normalized threshold value 0.

Initially, we have X(0) > ~X (i.e. R(0) > 0) such that the ecosystem is in the

normal regime. As time goes, the stochastic variable X(t) �uctuates such that the

probability for the system to �ip over a short time period [t; t + dt], conditional on

no �ip up to t, can be described by

Pr(X(t) � ~X) = Gt( ~X) (7)

where Gt(�) denotes the cumulative probability function for X(t) at time t, valid for
the in�nitesimal time interval [t; t+ dt]. Along the other dimension, this is also seen
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as the hazard rate at time t, �(t), so that

Pr(X(t) � ~X) = Gt( ~X) = �(t) (8)

The survival probability over [t; t + dt], conditional on a survival up to time t, can

thus be expressed as

1� �(t)dt � exp (��(t)dt) (9)

for dt ! 0. This can be readily veri�ed by a �rst order Taylor expansion of the

exponential function exp(��(t)dt) at dt = 0. While the discrete version of the total
survival probability from time 0 to � is given by �mn=1 (1� �(ti)dt) with t1 = 0; ti =
ti�1 + dt, tm = �, i = 2; 3; :::;m, the corresponding continuous time version of the

survival probability function from time 0 to t, conditional on the initial resilience

stock X0, becomes

S(X0; t) = exp

�
�
Z t

0

exp (�(s)ds)

�
= exp (��(t)) (10)

where �(t) =
R t
0
exp (�(s)ds) denotes the integrated hazard function. The cumulative

distribution function for a �ip up to time t is given as above by F (X0; t) = 1�S(X0; t).

It is worth mentioning that the cumulative distribution function Gt(X) in (7) is

de�ned over "space" (the resilience stock) for a given time t, whereas the cumulative

distribution function over "time", F (X0; t), is de�ned over time for [0; t]. How are

the two di¤erent cumulative distribution functions related to each other? And how

are they associated with the probability density function �(X0; t) from the previous

section? Since 1� F (X0; t) = exp (��(t)), we can take the time derivative on both
hand-sides to obtain

�(X0; t) = �(t) exp (��(t)) (11)

and then to integrate then densities to obtain

F (X0; t) =

Z t

0

�(s) exp (��(s)) ds (12)
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To get a better feel about the relationships, let us assume that the hazard rate �(t) is a

constant ��, then the integrated hazard becomes �(t) = exp(��t), and therefore the �ip

probability follows an exponential form with �(X0; t) = �� exp(���t) and the survival
probability S(X0; t) = exp(���t). Given a positive stream of the hazard rate, the

probability for survival over an in�nite time horizon is zero since limt!1 S(X0; t) = 0.

Then, what is the implicit price of the resilience stock? Well, if the resilience stock

is de�ned in a positive way with S1(X0; t) > 0, then a larger stock X0 would increase

the survival probability S(X0; t) over time and thereby delay the expected �ip date.

Now, the value of resilience can in principle be calculated by substituting (10) for

S(X0; t) in (5), and the expected welfare indicator with respect to dX(t) becomes

E(dŴ (K0; X0)) =
@Ŵ (K0; X0)

@K0

dK+
@Ŵ (K0; X0)

@X0

E(dX)

= P(t)dK(t) jt=0 + q(t)E(dX(t)) jt=0 (13)

4 The resilience stock dynamics as a stochastic process

Depending on the type of ecosystems, the resilience stock may evolve in di¤erent ways.

To �x ideas, we assume a convenient stochastic process for a stylized ecosystem, a

generalized Ito process

dX(t) = a(X; t)dt+ b(X; t)dZ(t)

where dZ(t) = "
p
dt with " assumed to be normally distributed with zero mean and

constant variance. Then, the expected welfare indicator depends on whether the drift

rate is zero or not. If there is no drift (a = 0), then the value of resilience should not

enter the welfare formula in (13) even if resilience itself has a value q(t). If there is a

drift, then we have

E(dŴ (K0; X0)) = P(t)dK(t) jt=0 + q(t)a(X; t)dt jt=0 (14)
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We can work out for an example, with the mean reverting, the Ornstein Ulhlenbecl

model (cf Dixit and Pindyck, 1994)

dX(t) = �( �X �X(t))dt+ �dZ(t) (15)

where �X is the long-run mean value of X(t), � > 0 an adjustment parameter on the

speed of convergence, and � the standard deviation of the change. The larger the

� value is, the quicker the process adjust back to its long-run normalized value �X.

Following this process, the cumulative distribution function over "space", Gt(X), has

a mean value

E(X(t)) = �X + (X � �X) exp(��t) (16)

and the variance as

V ar(X(t)) =
�2

2�
(1� exp(�2�t) (17)

which can be derived from the Kolmogorov equations and the moment generating

functions. Equation (16) describes the evolution of the expected resilience stock, and

(17) the variance at each point in time t. By linking these central tendency measures

over space to the expressions in (7) and (10), we will be able to assess the stream of

�ip probabilities over time.

5 A numerical example from Southeast Australia

The data used in the section is taken from our recent joint paper by Walker et

al (2006) describing the situation of the Goulburn-Broken Catchment in southeast

Australia. About 300,000 hectares in the lower part of the catchment are used for

dairy pastures, agricultural production and nature conservation. The problem is

that the intensive land use has resulted in biodiversity losses and rising groundwater

tables, which increases the risk of soil salinization. When the water table reaches 2

meters or less below the surface, the water with dissolved salt would be drawn to the

surface by capillary actions, and the process can in practice be regarded irreversible.

Irrigation or rain may �ush the salt down through the soil pro�le, but they also add
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Table 1: Stocks and values under the two di¤erent regimes

Area Price $/ ha Price $/ ha

(1000 ha) Normal regime Alternative regime

Dairy land non-salinizable 48 385.85 385.85

Dairy land subject to salinity 192 385.85 38.59

Horticultural land non-salinizable 4.8 677.16 677.16

Horticultural land subject to salinity 19.2 677.16 6.77

to the height of the water table pushing up the salt. Since the saline soil is less fertile,

the value of the land should depend on the water table and thereby the risk of soil

salinization. The areas and unit prices (in present value) of four di¤erent land use

categories for the year 2001 are shown in table 1, both for the normal regime (water

table below 2 meters below surface) and the alternative one (water table less than 2

meters below surface). It can be seen that some land areas are non-salinizable even

if the water goes up close to the surface such that the land prices remain unchanged.

In addition, a salinization will reduce the price of dairy land by 90% and that of the

horticultural land by 99%.

The water table typically �uctuates due to instantaneous changes in temperature

and precipitation as well as the overall trend of the climate, and thus it can be best

characterized as a stochastic process. According to a scenario with continued dry

climate condition in the future (Walker et al, 2006), the water table is expected to

fall from its "initial" 3.5 meters in 2001 below surface to an average of 5 meters in

the year of 2030. In spite of this trend, the probability for the water table to rise

close to surface to salinity the soil is close to 1.0, if no preventive actions taken.

Based on these facts, we describe the water table dynamics by

dX(t) = 0:09(5�X(t))dt+ 0:5dZ, X(0) = 3:5 (18)

A random realization of the process is depicted in Figure 1 with �uctuations in green

color. The curve in red represents the trend for the water table to fall from 3.5 to
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5.0 meters over the 30 years period, and the lower and upper dotted curves in blue

denote the 95% con�dence interval.
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Figure 1: Simulated stochastic water tables with trend

What is our resilience stock here? We may de�ne it by the distance from the

critical water table ~X = 2. For example, if X(t) = 3:5 meters, then the resilience

stock is R(t) = X(t)� ~X = 1:5 meters; and if X(t) = 10 meters, the resilience stock

is R(t) = 8 meters. Salinization would certainly take place when the resilience stock

lies below 0. However, since X(t) is random for t > 0, we can only state the salinity

risk in probability terms.

Using (8) through (10), we have calculated the survival probabilities over time for

the stochastic resilience stock process (18), as depicted in Figure 2. While the solid

curve in blue describes the probability that the system will remain in its normal state

starting from an actual initial water table X0 = 3:5, the dotted curve in green depicts

the survival probability over time for an hypothetical initial state with X0 = 4:5:
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Figure 2: Survival probabilities for di¤erent initial water tables

To calculate the shadow price of the resilience stock, we also need to assess the

instantaneous loss3 caused by salinization, �U(t) = U1(t) � U2(t), at each point in
time t. As in Walker et al (2006), we calculate the loss based on the market prices

of the land under di¤erent regimes. For this example, there is no change in the areas

of the land use categories, i.e. the ordinary capital stocks. Then, by assuming that

the annual interest rate as r = 2:5%, we obtain the average monthly loss measured

in real prices as

�U(t) =
0:025

12
(192 � 385:85 � 0:9 + 19:2 � 677:16 � 0:99) = 165:72 (19)

3In this paper, we consider the lowering of the (salted) water table as an economic good that

contributes positively to production and human welfare. This is true for the GBC in southeast

Australia. However, we are fully aware that in other regions with (clean) water supply shortages, a

water table decrease would a¤ect human welfare negatively.
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measured in thousand dollars. Then, we calculate the marginal value of the resilience

stock by using a discrete-time version of (5), i.e. the present discounted value of the

expected gains over 360 months (30 years) accrued from a marginal increase in the

initial resilience stock:

q(0) =
360X
i=1

�S(i) ��U(t) �
�
1 +

r

12

��i
=

360X
i=1

�S(i) � (165:72) �
�
1 +

0:025

12

��i
= 10858

where�S(i)measures the change in survival probability for month i, (i = 1; 2; :::; 360),

caused by a hypothetical perturbation of the initial water table from 3:5 to 4:5 me-

ters from the surface - the vertical distance between the two curves in �gure 2, and

the third term is the discount factor. The interpretation of the number is that, if

the resilience stock increases by one meter, i.e. the water table falls from 3.5 to 4.5,

then the reduced future �ip risks caused by the change in water table is worth 10858

thousand dollars. We also calculate the shadow prices of the the resilience stock for

some hypothetical initial water tables, e.g. X0 = 4:0; 4:5 and 5:0, and obtain the

shadow prices as 8629, 7674 and 6735, respectively. It is seen that the lower the water

table, or the higher the resilience stock, the lower the shadow price per unit change in

the water table, as expected. These number may be useful for economic analysis at

least in two ways. One is social cost bene�t analysis. Suppose that the cost to pump

up the salted water to lower the water table from 3.5 to 4.5 below the surface is less

than 10858, then it is socially pro�table to pump, otherwise not. Another application

is to incorporate the value in dynamic welfare analysis within the inclusive wealth

framework (Arrow et. al. 2003). For a local-in time change, say, from year 2001 to

2002, the expected decrease in the water table is E (dX) = 0:09 � 1:5 = 0:135 meters
according to (16). The corresponding change in the inclusive wealth over the year

becomes
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E(dŴ (K0; X0)) = P(t)dK(t) jt=0 + q(t)E(d(X(t)) jt=0

= 0 + 10858 � 0:135

= 1466

where the contribution of the ordinary capital stocks (the areas of the four land use

categories) is zero as they are assumed to be constant over time. The increase in

inclusive wealth here is therefore purely due to the improved resilience by the natural

trend of falling water tables. It is worth mentioning that the trend may also be forced

by pumping activities or other measures to enhance the inclusive wealth, though the

cost os installing and running the pumps should be deducted. How should we evaluate

the dynamic welfare e¤ect over a longer time period? Following Arrow et al (2003)

and Dasgupta and Mäler (2001), we calculate the change in the expected inclusive

wealth over the whole 30-year-period by

�W = q(t)�X(t)
��30
t=0 �

Z 30

0

E(X(t)) _q(t)dt

= 13598

in which the capital gains over time have been removed. With this stylized example,

we can conclude that the intertemporal welfare as of the year 2001 can be sustained

in the future4.

6 Concluding remarks

In this paper, we have developed a capital theoretical model for pricing ecological re-

silience. In additional to the conventional capital stocks such as natural, physical and
4It is worth mentiong that we have not included the contribution of other services of the land,

regional infrastructural and educational investments etc in the calculation exercise here. The issue

will be explored further in the next stage of the project. After all relevant value components are

aggregated in an inclusive wealth framwork, we can say more about the overall sustainability prospect

about the region.
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human capital, we also consider the variable that a¤ects the resilience of ecosystem

functions and stability as a capital stock. Thus, the resilience stock may have a value

in its own right even if it may not be directly involved in the production process.

In comparison to the other capital forms, this resilience asset enters the model in

a di¤erent way. Under the normal condition, it does matter for the ecosystem ser-

vices and human-well being. However, when the resilience stock variable crosses a

threshold, then the ecosystem will �ip into a qualitatively di¤erent state, presum-

ably an undesirable one. After the �ip, the production potential and other intangible

services of the system will be rather di¤erent and the governing rules for managing

the system should also be adapted. If we look at the ex post outcome, the inclusive

wealth (Arrow et al., 2003) will undergo an abrupt, a non-continuos fall, at the time

when the �ip takes place. However, since the �ip date in the future is not known

with certainty, we will take advantage of the (ex anti) expected inclusive wealth as a

welfare measure, which is smooth over time. The pattern of future �ip risks depends

on how the resilience stock evolves over time.

When the resilience stock is high, e.g. when the biomass of a keystone species is

far above its minimum viable population level, we would expect a high probability for

the system to remain stable for a given future time horizon. On the contrary, if the

system resilience is close to zero, then a small external shock may drive the species

into extinction. Thus, the resilience stock has a value per se for its role in retaining

ecosystem functioning and stability. We consider the dynamics of the resilience stock

as a stochastic process, and developed a link between the �ip probability over "space",

e.g. biodiversity, vegetation connectivity, ground water table, and that over time

through the use of hazard rates. The shadow price of resilience is formally de�ned

as the present discounted value of future improvements in welfare accrued from the

reduced risks of �ip due a unit increase in the initial resilience stock.

The capital-theoretic part of the paper resembles to a some extent the theory of

catastrophes (cf Dasgupta and Heal, 1974; Cropper, 1976; Tsur and Zemel, 2006) but
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with a di¤erent highlight. Rather than examining the adaptation strategies, we focus

on deriving the shadow price of resilience in order to be integrated in social cost-

bene�t analysis and inclusive wealth evaluations. To illustrate our theory, we also

provide a numerical example from southeast Australia. The resilience stock in this

case is de�ned as the distance between the underground water table and a threshold

value of it above which the dissolved salt will cause severe soil salinization. Using a

mean-reversing stochastic process for the water tables, we have calculated the shadow

prices of the resilience stock, and applied results for making welfare comparison using

the Arrow et al (2003) inclusive wealth model.

It is worth mentioning that we have in this paper only considered a single resilience

stock. In reality, however, there may be multiple variables with simultaneous and

interdependent threshold e¤ects. In this case, the model should be expanded to

a vector of resilience variables with the interdependence between them taken into

account. In addition, the resilience stock considered in the present paper is assumed

to a¤ect the �ip probability only with no other functions. In case that the stock also

has other functions such as amenity services etc., the contribution of the stock should

also be included in the utility function. Finally, we have assumed that the stochastic

trend of the resilience stock is determined by external forces such climate changes.

In future research, it will prove useful to "internalize" the trends as an endogenous

function of purposive policies and management actions.
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