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Abstract

Spatial energy balance models are used by climate scientists to
help understand climate dynamics and to assist construction of more
complex general circulation models and to explain the output of such
models. In this paper we present the first, to our knowledge, coupled
spatial energy balance and economic growth model. We show how the
spatial aspects of climate dynamics captured by our model leads to
new insights on: (i) The contentious issue of whether a gradualist ap-
proach to mitigation of climate change by, for example, carbon taxes
is preferable to an initially more aggressive approach, (ii) The effect of
melting polar ice caps on optimal policy, (iii) Robustness of optimal
climate policy to spatial damage uncertainty, and (iv) Economic justice
considerations raised by variation in spatial damages, e.g. variation in
latitude specific damages . For example the endogenously moving ice
line of shrinking polar ice caps in our model leads to initially a more
aggressive policy ramp followed by a less aggressive segment followed
by a similar ramp as policy ramps of the gradualist type.

Keywords: Spatial energy balance models, climate change, ice line, eco-
nomic growth

1 Introduction

This paper presents the first, to our knowledge, coupled spatial energy bal-
ance climate model (EBCM) integrated with an economic growth model.
It introduces solution methods for spatial climate models that may be new
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to economics and it integrates these methods with the standard methods
of solving economic models. Before we proceed further we believe that it
is useful to point out why this is worth doing by providing an important
example at the outset.

It appears that much of the current scientific discussion about climate
change concentrates around the calculation of the true costs of global climate
change and the implications of these calculations for policy design, an issue
which relates directly to the decision to undertake or not policy action and
its time profile. It seems that among economists there is no longer a debate
on whether action should be taken or not. Carey (2011) quotes Mendelsohn
as stating that:

"The debate is how much and when to start. If you believe that
there are large damages, you would want more drastic immedi-
ate action. The Nordhaus camp, however, says we would start
modestly and get tougher over time".

Thus the debate among economists in dealing with climate change on the
mitigation side has basically settled on whether to increase mitigation efforts
(e.g. carbon taxes) gradually (e.g. Nordhaus (2007, 2010, 2011)) versus
those who believe we should mitigate rapidly. Stern (2006) justifies the call
for immediate action on the normative grounds of using a low discount rate
to discount the future costs of climate change. Weitzman (2009a) and in his
rebuttal of Nordhaus (Weitzman , 2009b) argues that the possibility of low
probability climate catastrophes strengthens the case for quick action now
to mitigate potential catastrophic climate change. His argument is based
on bad fat tails in the distribution of future damages from climate change.
Sterner and Persson (2010) justify strong and urgent action by accounting
for non-market damages from climate change, while Weitzman (2010) based
on two risk aversion axioms discusses policy implications stemming from the
distinction between additive and multiplicative dis-utility damages."

This paper attempts to provide new insights regarding the debate of
“how much and when to start” using as starting point the temporal and
the spatial structure of damages from climate change which is implied by
the science of climate change, without resorting to arguments regarding the
choice of the discount rate, the structure of uncertainty, or the rising relative
prices for environmental amenities. Although all these factors are important
in deciding “how much and when to start”, we believe that by framing the
problem in a way that climate science implies the structure, the spatial, and
the time profile of damages provides a sound and potentially empirically
justified approach to policy making.

'Judd and Lontzek (2011) have formulated a dynamic stochastic version of DICE
which they call, DSICE. They also extend their model to include stochastic tipping point
possibilities. They show how this additional real world complexity substantially affects
the optimal policy results in comparison to DICE



Thus the coupling of dynamic economic growth models with dynamic
spatial EBCMs that we undertake in this paper enables us, as we will make
clear in the rest of the paper, to obtain new insights about the intertemporal
shape and the spatial shape of the distribution function of damages and to
translate these insights into policy rules regarding the time and spatial paths
of mitigation efforts.?

A popular class of EBCMs are the models of North (North (1975a),
North (1975b)), North, Cahalan and Coakely (1981), and Wu and North
(2007).3 Although the EBCMs that we use are simple climate models, many
useful insights into climate dynamics can arise from these simple models
(Pierrehumbert , 2010). A large class of the EBCMs which we focus upon,
have an endogenous ice line where latitudes north (south) of the ice line are
solid ice and latitudes south (north) of the ice line are ice free. There has
been a lot of concern about the effects of ice melting, i.e. the ice lines being
pushed closer to the North and South Poles by global warming,* and the
incorporation of these effects into economic models might effect decisions to
engage in large mitigation efforts now.

To be more precise, when the ice lines move closer to the poles marginal
damages from moving will be large at first and then diminish as the ice
line approaches the Poles. This makes sense. When there is a lot of ice
to melt the damages would be larger than when there is almost no ice left
to melt. Hence the marginal damages plausibly are higher when the polar
ice caps are larger. To put it another way the potential damages from ice
melt should be larger when there’s a larger source of ice to melt. Let us
explain this argument in more detail. Suppose human effects are causing
the ice lines to move closer to the Poles. Suppose damages from this effect
are proportional to the amount of ice melting. Let x denote the sine of the
latitude as in North (1975a,b) and assume that the ice line is at latitude
xs from the North Pole (at the the North Pole x = 1). Let us consider
now damages from moving the ice line by dx towards the North Pole. The
ice area lost in the Northern Hemisphere when the Northern ice line is at
xs is approximately proportional to 27 (1 — x4)dx for small dx. Thus as
human activities move the ice line towards the North Pole the ice area lost
diminishes and marginal damages diminish also.® The argument of ice line

2We hasten to add that the basic argument of economists, e.g., Nordhaus (2007), that
taxing carbon in a harmonized manner is the efficient policy still stands in our spatial
setting.

3See also the book by Pierrehumbert (2010) that covers in a very nice way the general
principles of planetary climate as well as climate models including EBCMs.

1Of course these simple models do not capture elements of potentially abrupt changes
in ice melting and its impact on coastlines that are stressed by, for example, Michael
Oppenheimer and his co-authors (Oppenheimer (2000, 2005), Little, Gnanadesikan and
Oppenheimer (2009), but nevertheless they provide useful insight into the expected effects
of climate change.

50f course these damages which are larger for larger ice caps and shrink as the ice



dynamics, which was just sketched above but will be analyzed in detail in
the paper, supports arguments for rapid ramping up of mitigation efforts
(e.g. Weitzman, Stern) and is suggestive of the value added from developing
unified economic and energy balance climate models.

Another issue that economic-EBCMs could provide new insights relates
to the argument that the gradualist policy ramp may not be robust to other
plausible specifications is the economic justice argument of Rawls, i.e. that
global policy should be to maximize the welfare of the worst off region.
For example, Nordhaus (2007) and Dell, Jones and Olken (2008) point
out that poorer (and more tropical) regions are projected to suffer more
damages from climate change than wealthier (and more temperate) regions.
A Rawlsian objective would maximize the welfare of the least well off region.
In our spatial model this objective could be formalized by maximization of
the least well off latitude.5 7

Remaining with the spatial aspects of the EBCMs this is a good point
to further discuss what kinds of questions we may hope to address with a
spatial climate model in coupled climate economic modeling that can not be
addressed with models like that of Nordhaus (2007, 2010). For example,
Nordhaus’s RICE 2010 divides the world into US, EU, Japan, Russia, Eura-
sia, China, India, Middle East, Africa, Latin America, Other high income,
Other developing Asia. The climate dynamics of RICE 2010 are

“mass of carbon in reservoir for atmosphere, upper oceans, and
lower oceans,. . . global mean surface temperature, of upper oceans,
temperature of lower oceans.” Nordhaus (2010)

Dynamics of these quantities are distributed lag equations of past quan-
tities and the global mean surface temperature dynamics is also a function
of current radiative forcing, but there is no spatial geography. It is probably
useful to think of Nordhaus’s quantities on the climate side of the model
as some sort of aggregates over spatial dimensions. In his book, Nordhaus
(2007) states that the damage functions continue to be a major source of

caps shrink are just the damages caused by the release of water from the thawing ice, i.e.
the rise in sea levels caused by thawing ice. There may be other damages caused by the
increasing loss of the ice caps and their role in regulating the climate.

5To do a more accurate job of finding the optimal policy ramp of, say, carbon taxes,
under a Rawlsian objective, .we would need a spherical two dimensional model like that
of Brock and Judd (2010). However the one dimensional models considered here provide
useful insights without the complexity of two dimensional models.

"Rawlsian objectives may strike the reader as rather “starry eyed” from the point of view
of wealthier parts of the world. However, elements such as national security concerns may
drive enlightened self interest on the part of wealthier regions to act more like Rawlsians.
At the very minimum one should design policy to be robust against uncertainty in the
specification of the proper policy objective function as well as uncertainty in climate and
economic dynamics.



modeling uncertainty in the DICE model. A recent study of climate dam-
ages due to temperature and precipitation changes is Dell, Jones and Olken
(2008) which found that levels and growth rates of the economies of poorer
parts of the world were damaged more than levels and growth rates of the
wealthier parts of the world. The wetter regions of the world are expected
to become wetter and the dryer regions of the world are expected to become
dryer (GFDL, 2008). We proxy this kind of effect of climate change in this
paper by a damage function for an area A where damages increase as mean
area, A temperature increases and variance area A temperature increases.
More will be said about this below.

To summarize we believe that the main contribution of our paper is to
couple spatial climate models with endogenous ice lines, with economic mod-
els, and use these spatial climate science models to discipline the structure
and the shape of potential damage functions, in order to provide new insights
regarding the optimal time profile for current and future mitigation. To put
it another way this paper couples the economic models we use all the time in
economics with a class of spatial climate models used by climate scientists.
We believe this endeavor apart from being valuable in its own right, provides
new insights regarding the temporal and spatial paths of policies designed
to address climate change .

Since energy models are new in economics we proceed in steps that we
believe make this methodology accessible to economists. In section 2 we
present a basic energy balance climate model® which incorporates human
impacts on climate. In developing the model we follow North (1975a,b)
and use his notation. We use the model to expose solution methods and
especially the two mode approach which transforms the systems of partial
differential equations (PDEs) in infinite dimensional spaces resulting from
spatial modelling, to systems of ordinary differential equations (ODEs) in fi-
nite dimensional spaces. The two mode approach will be extensively used to
solve the integrated economic-EBC model. In section 3 we couple a simpli-
fied version of the energy balance model, with a simple economic model and
show that ice line damages explicitly introduced through the EBCMs, sug-
gest even at this very simple level, the possibility of multiple steady states,
history dependence in the optimal paths and rapid now, instead of gradual
mitigation. Section 4 uses the insights of the previous sections to couple a
spatial EBCM with an economic model that has the structure of the well
known integrated assessment model RICE. We use this approach to discipline
the temporal and spatial shape of the damage function. In this more tradi-
tional, on the part of the economics, modeling we obtain results similar to
the more simplified model of section 3, regarding multiple steady states and

8For more on EBCMs see for example Pierrehumbert (2010) (chapters 3 and 9, es-
pecially sections 9.2.5 and 9.2.6 and surrounding material). North, Cahalan and Coakely
(1981) is a very informative review of EBCM’s. while Wu and North (2007) is a very
recent paper on EBCM’s.



history dependence of the optimal paths, and insights about the spatial and
temporal structure of optimal mitigation policies. Motivated by this mod-
elling exercise we turn, in section 5 in analyzing DICE, the most popular of
the integrated assessment models, in the context of damage function implied
by our approach. We provide numerical results by running the DICE model
with explicit ice line damages which have a time profile consistent with the
profile implied by the EBCMs we developed in this paper. Our numerical
results suggest that U-shaped policy ramps where we mitigate rapidly at the
beginning to defend against the ice-cap loss, we slow down as damages from
the ice caps are reduced and then increase mitigation as damages from the
overall increase in temperature dominate, could be optimal policies. The
final section concludes.

2 A Basic Energy Balance Climate Model

In this section we develop a one-dimensional Energy Balance Climate Model
with human inputs. The term ‘one-dimensional’ means that there is an
explicit one dimensional spatial dimension in the model so that our unified
model of the climate and the economy evolves both in time and space. We
follow North (1975a,b) and North, Cahalan and Coakely (1981) in this
development.

Let x to denote the sine of the latitude. We shall abuse language and
just refer to = as “latitude”. Following North (1975a,b) let I(x,t) denote
outgoing infrared radiation flux measured in W/m? at latitude x at time ¢,
T(x,t) denote surface (sea level) temperature measured in °C at latitude x
at time t. The outgoing radiation and surface temperature can be related
through the empirical formula.’

I(x,t) = A+ BT (z,t), A=201.4W/m? B = 1.45W/m? (1)

Following North (North (1975a), equation (29)) the basic energy balance
equation with a human input can be written as:
oI (x,t) 0

T QS (z,t)a(x,xs (t)—[I (z,t) — h (:E,t)]-{—D% (1-2?

oI (x.t)
ox
(2)
where units of x are chosen so that x = 0 denotes the Equator, z = 1
denotes the North Pole, and = —1 denotes the South Pole; @ is the solar

°It is important to note that the original Budyko (1969) formulation cited by North
parameterizes A, B as functions of fraction cloud cover and other parameters of the climate
system. North (1975b) points out that due to nonhomogeneous cloudiness A and B should
be functions of x. There is apparently a lot of uncertainty involving the impact of cloud
dynamics (e.g. Trenberth et. al. (2010) versus Lindzen and Choi (2009)). Hence robust
control in which A, B are treated as uncertain may be called for but this is left for further
research..



constant'? divided by 4; S (z,t) is the mean annual meridional distribution
of solar radiation which is normalized so that its integral from 0 to 1 is unity;
a(x,zs (t)) is the absorption coefficient which is one minus the albedo of the
earth-atmosphere system, with z (¢) being the latitude of the ice line at time
t; and (2) D is a thermal diffusion coefficient that it has been computed as
D = 0.649Wm~2°C~! (North, Cahalan and Coakely (1981))

Equation (2) states that the rate of change of outgoing radiation is
determined by the difference between the incoming absorbed radiant heat
QS (z,t) a(z, zs (t)) and the outgoing radiation [I (z,t) — h (z,t)]. Note that
the outgoing radiation is reduced by the human input h (x,t) . Thus the hu-
man input at time ¢ and latitude x, can be interpreted as the generation
of greenhouses gases (GHGs) that reduce outgoing radiation. Since GHGs
can be regraded as a function of produced output at latitude x, we may
write h(x,t) = f(y(x,t)) where y(z,t) is produced output at (z,t). As
pointed out by North (1975b), in equilibrium at a given latitude the in-
coming absorbed radiant heat is not matched by the net outgoing radiation
and the difference is made by the meridional divergence of heat flux which is

modelled by the term D% {(1 — x2) %] . This term explicitly introduces

the spatial dimension into the climate model. Since the spatial domain has
one dimension the model is called one-dimensional in contrast to the zero-
dimensional model where the spatial dimension is not taken into account
explicitly. The energy balance equation (2) incorporates, for the first time
to our knowledge, economic variables - output production - in an energy
balance model. The importance of this is that by modelling ice line damages
and discontinuous albedo, issues which are not taken into account into stan-
dard IAMs, we identify the existence of nonlineraities and multiple steady
state for the unified economy-climate model which could be important in
policy design and the identification of new policy ramps. !

Returning to the description of (2), above the ice line absorption drops
discontinuously because the albedo jumps discontinuously. We will follow
North (1975b), page 2034, equation (3)) and put

bop = 0.38 T > T

ag+ agPs () < x4 (3)
ag = 0.697

a1 = —0.0779

a(z,zs) =

where P (z) = (32 — 1) /2 is the second Legendre polynomial.'? In this set

0The solar constant includes all types of solar radiation, not just the visible light. It is
measured by satellite to be roughly 1.366 kilowatts per square meter (kW /m?).

"Note that at this stage output is regarded as an exogenous forcing parameter in order
to inroduce the EBCM in a clear way. Output will be endogenized in the unified economy-
EBC models that we develop in the next sections

12A smoothed version of (3) is Equation (38) of North, Cahalan and Coakely (1981),
(p- 98).



up the ice line is determined dynamically by the condition: (Budyko (1969),
North (1975a), North (1975b))

T > —10°C no ice line present (4)
T < —10°C ice present
The ice line function xg (t) solves the equation Iy = I (zs(t),t). Thus
the latitude of the ice line can move in time in response to changes in human
input since the ice line solution depends on h (z,t). Moving of the ice line
towards the poles generates the damages we discussed in the introduction.
Using 1 and 4 the outgoing radiation at the latitude of the ice line for each
date t is
I (xs) = Iy =195.7 W/m? (5)

A steady state for the outgoing radiation is a function of latitude I (z)
which satisfies the equation

oI (x.t)

_ = - 0
0=Q5S (z)a(z,zs) — [I(z) — h(z)] + D£ (1—2?) e (6)

while the steady state ice line will satisfy I, = I (Z4) with I determined by
(5).

The way to approach this problem would be to solve (2) for a given
human input function h (z,t) and to obtain a solution function I (x,t) . Then
using (1) the temperature and the ice line at each date and latitude can be
determined. When the human input changes this solution can be used to
trace the impact of the human input on outgoing radiation, the surface
temperature and the ice line at each latitude. Since temperature and ice
line changes are associated with damages this type of modeling allows to
incorporate spatial impacts and different sources of climate damages into
the damage functions used in the economics of climate change.

We turn mow to a more detailed analysis of the solution process. Equa-
tion (2) is a PDE. One might think that we are going to have to deal with
the complicated mathematical issues of the solution or the optimal control of
PDEs when we need to discuss the social optimization problems over space.
But, as we shall see, the climate problem reduces to the optimal control of
a small number of “modes” where each “mode” follows a simple ODE. We
believe this decomposition is another important and new contribution of our
paper to the study to coupled economic and climate models. Let us con-
tinue with the development of the solution procedure for equation (2) before
turning to optimization.

North (1975b) approached the solution of (2) by using the approximation
methods (Judd (1998) Chapter 6). Thus the solution is approximated as:

I (x7t) = Z I (t) P, (‘T) (7)

n even



where I, (t) are solutions to appropriately defined ODEs and P, (x) are
even numbered Legendre polynomials. A satisfactory approximation of the
solution for (2) can be obtained by the so called two mode solution where
n = {0,2}. We develop here a two mode solution given the human forcing
function h(z,t). We do it for the Northern Hemisphere only since, following
North, we treat the Southern Hemisphere symmetrically.'®> The two mode
solution is defined as

A

I(z,t) =1Io(t) + I (t) P> (2) (8)
dly 1
—r=—l(t)+ /O [QS> () & (2, 25 () + h (2, t)] dz, To(0) =Ioo  (9)
Ip(t)=¢" [Ioo + /Ot e [QSo (x5 (u)) + ho (u)] du] (10)
dl, !
- =—(1+6D) I (1) + 5/ [QS: (z) a (2,25 (1) + I (2,1)] P2 (2) dw,
0

(11)
15 (0) = Io2 (12)
a6 = O i+ [0 Q8 o ) sl (13

0

1 1
S, (xs):/o S (2)a(z,25) Py (2)dz , hn (t):/o bz ) Py (z)de (14)

S(z) =14 S2P>(x) , So=—-0.482, n=0,2 (15)
(33:2 — 1)

PO (:E) = 1,P2 ($) = 5

(16)

The derivation of the solution is presented in Appendix 1.1 Given the
definitions of the functional forms the two mode solution is tractable and
can be calculated given initial conditions Iyg, Ipo which are determined by
initial climate. As shown below, the two mode solution can be used to obtain
tractable solutions regarding the ice line and temperature 7' (x,t) .

2.1 The two mode approximation of ice line function

This is a function z; (t) that solves

Iy =1Io (t) + 12 (t) Pa (w4 (1)) (17)

130f course the two hemispheres are very different in reality, but we abstract from that
complexity here.

“The two mode solution is an approximating solution. We can develop a series of
approximations of increasing accuracy by solving this problem for expansions using (a
“two mode” solution) and using (a “three mode” solution) and so on. North results suggest
that the two mode solution is an adequate approximation.



To determine the two mode ice line function through (17) the disconti-
nuity in the albedo expressed by (3) and (4) should be taken into account.
This can be done by applying to the two mode solution for the ice and the
ice free areas, value matching, smooth pasting and appropriate boundary
conditions at the pole and the equator North (1975a). This function, which
may not be unique, will depend on the human input h (x,t) .

To obtain the two mode approximation steady-state ice line (9) and (11)
are used. The steady state values for the I's are given by

- 5[QS, () + ho

I, = Ts) + h I, = 1
0=Q5S% (Zs) +ho , I 156D (18)

where it is assumed that
1 1
as t — oo,/ h(x,t)dx — hg and / h(x,t) Py (x) dz — ho. (19)
0 0

The two mode steady state ice line is the solution of Iy = Iy + I P, (Z4) ;and
can be obtained by using value matching, smooth pasting and appropriate
boundary conditions. It is important to note that there may be more than
one solutions to the ice line.

2.2 The two mode approximation of the surface temperature

In the context of the two mode approximations, we may use the two mode
expression for I(z,t) to obtain a two mode expression for surface (sea level)
temperature T'(x,t), i.e T (x,t) = T (t)+ T (t) Py (z) where Ty (t) and Ty ()
solve the ordinary differential equations.

1

B;ltTO =—(A+ BTy (1)) + / [QSs (z) a (w24 () + h (z,t)] do (20)
0

B;l;zé = — (1 + GD) BT (t) + (21)

1
5 [ 1082 (2)a (o () + b (2 0)] P2 (o) do
0
To (0) = Too, T2 (0) = Toeo (22)
The ice line function zs () in terms of the temperature solves
Ty (t) + 13 (t) Py (‘Ts (t)) =Ts, Ts = -10°C (23)

and can be determined using the value matching conditions described above.
From the two mode approximation of the temperature, we obtain the global
mean temperature mp = Ty (t) , which is the integral of T'(x,t) over « from
zero to one'®, and the variance of the temperature,

1 1 2
Vi = /0 (7 (1)~ T (t)fdx: /0 (T3 (t) Py () da = @ (24)

5This because fol P, (z)dz = 0.

10



Local temperature means at latitudes (z,x + dx) and the mean of tem-
perature over the set of latitudes Z = [a, b] are defined by

[To (t) + To (t) P2 (z)] dz,m[a,b] = /b [To (t) + T2 (t) P2 (x)] dx (25)

a

while the variance of temperature over the set of latitudes Z = [a, b] is
b
Via, b = / [Ty (t) + Ts (t) Py (x) — m [a, b; t]]* da: (26)

When the area Z = [a,b] is introduced, It is plausible to assume that
utility in each area [a, b] depends upon both the mean temperature and the
variance of temperature in that area. For example we may expect increases
in temperature variance to have negative effects on output in any area Z
whether it is located in tropical, temperature, or colder latitudes. Whereas
mean temperature increases in some areas Z (e.g. Siberia) may increase
utility rather than decrease utility.'® Existing dynamic integrated models of
climate and economy, (e.g. Nordhaus’s well known work (2007), (2010)) can
not deal with these kinds of spatial elements, such as impacts of changes in
temperature variance, generated by climate dynamics over an area Z.

The two mode approximate solutions (8)-(16) and (20)-(22) are equiv-
alent because they are related by I = A + B7T. Since the existing models
of climate and economy, model climate in terms of temperature we are go-
ing to use this equivalence to develop energy balance models of economy
and climate using temperature as the state variable directly associated with
climate. We introduce such a model in the next section.

3 A Simple Integrated Dynamic Economic - Cli-
mate Model

In this section we develop a simplified integrated model of economy and
climate, with the climate part motivated by the energy balance models de-
scribed above. The climate part should incorporate state variables related
to the two mode temperature solution and an ice line equation. The two-
mode temperature solution is T (z,t) = Tp (t) + T (t) P> (z). Wang and
Stone (1980) argue that an approximation for this solution equation can
be achieved by replacing 75 (t) by an appropriate constant, which we shall

denote by T. Then (dT (x,t) /dt) = (dTp (t) /dt) . Recall that Ty (¢) is global

511 a stochastic generalization of our model, we may introduce a stochastic process to
represent “weather,” i.e. very high frequency fluctuations relative to the time scales we are
modeling here. Here the “local variance” of high frequency phenomena like “weather” may
change with changes in lower frequency phenomena such as mean area Z temperature and
area Z temperature variance. We leave this task to future research.

11



mean surface (sea level) temperature. Then the evolution of the mean tem-
perature is given by (20) or, by setting Ty (t) = T (t)

1
T _ 2 1w+ /0 Q52 (#) @ (2,24 (1) + (2, D] dx (27)

dt B
Thus the Wang-Stone approximation reduces the state variables from two,
in the model (20)-(21), to one whose evolution is described by (27). Wang
and Stone (1980) (equation 3) calibrate the model by best fitting the two
mode solution to data and use this approximation to get a simple equation
for the ice line

25 (£) = (aice + biceT (1))Y?, tice = 0.6035, bice = 0.02078 (28)

Damages from climate change emerge both form temperature increase
and movement of the ice line towards the north. Let us define these damages
by two functions Dy (T (t)) and Do (zs (t)), where 1 denotes damages due
to temperature rise and 2 denotes damages due to ice line movement. A
simplified integrated economic climate model can be developed along the
following lines.

We associate human input with GHGs emissions and we denote by E (x, t)
~vh (z,t) the emissions associated with human input h(z,t). These emis-
sions affect the temperature dynamics of our simplified climate model. We
further assume, as is plausible, that at each latitude emissions disperse
rapidly, relative to the longer time scale of our analysis across latitudes,
so that fol ~vh (z,t) de = vh (t). We consider a simplified economy with ag-
gregate capital stock k. An amount ko from this capital stock is diverted
to alternative ‘clean technologies’. Output in this economy is produced
by capital and emissions h according to a neoclassical production function
f (k= ko, h+ ¢ko), where ¢ is an efficiency parameter for clean technolo-
gies. The cost of using a unit of h is ¢, (h) ,with ¢, (0) = 0, ¢, > O,C;: > 0.
The use of emissions can be reduced by employing clean technologies at an
effective rate ¢ko. Denoting consumption by ¢, net capital formation is our
simplified economy is described by

dk

E:f(/ﬁ—kg,h—l-(ﬁkg)—C—Ch(h)—5k (29)
where ¢ is the depreciation rate on the capital stock. Assuming a linear
utility function or U (¢) = ¢ the problem of a social planner that seeks to

maximize discounted live time consumption subject to (27), (28), and (29)
can be described, in the context of a integrated economic/climate model, in
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terms of the following most rapid approach path (MRAP) problem.!”

V(T'(0)) = max /OOO e [f (k = k2, b+ dkz) — cn(h) — (6 + p)k (30a)
—Dy (T (t)) — Dy (s (t))] dt

subject to (28) and (30b)
dj;—f) _ _% ~T )+ Lh() + %Q/) (T (1), (30¢)
1
b (T (1)) = /O (QSs (&) o (2,25 (£))] d , T (0) = Ty (30d)

where V (T (0)) is the current value state valuation function, p is the sub-
jective rate of discount on future utility,and the nonlinear function ¥ (7' (t))
is an increasing function of 7" (North (1975a)). Problem (30a)-(30d) after
the successive approximations has been reduced regarding the climate part
to a ‘zero-dimensional’ model. We still believe that this exercise is of value
because it outlines a pathway to extensions to one dimensional models and is
even suggestive via the Legendre basis method of how one might potentially
extend the work to two dimensional models on the sphere.!® Problem (30a)-
(30d) is in principle tractable to one dimensional phase diagram methods
with the costate variable on the vertical axis and the state variable on the
horizontal axis. However, we feel that insights are gained more rapidly by an-
alyzing the following qualitatively similar problem that is strongly motivated
by the problem (30a)-(30d).

V(T (0)) = max /000 e P [f (k — ko, h + ¢ka) — cn(h) — (6 + p)k  (31a)
=Dy (T) = Dy (T)] dt

aT
s.t. E =ar — bpT + crh (aT, br, CT) > (O, 0, 0) (31b)
where D) (T) = a1T, implying increasing marginal damages due to tem-
perature increase, while D), (T) is a function increasing at low T reaching
a maximum and the decreasing gradually to zero. The shape of Dy (T) is
intended to capture initially increasing marginal damages from ice line rise

1"The assumption of linear utility allows one to write a capital accumulation problem
as a MRAP problem Problem (30a) is an approximation of the MRAP problem for very
large B and —B < % < B. In problem (30a) capital,k, can thus be eliminated as a state
variable.

¥Brock and Judd (2010) are developing a two dimensional spherical coupled cli-
mate/economic dynamics model by using a basis of spherical harmonics as in Wu and
North (2007). This approach, as well as the Legendre basis approach we are using in this
paper for one dimensional models fits in nicely with the general approach to approximation
methods in Judd’s book (Judd (1998), Chapter 6)
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(induced by temperature rise) which reach a maximum, as temperature in-
creases, and eventually vanish once the polar ice caps are gone. Define

m(h) = kz%{ggzo{f(k — kg, h+ ¢k2) — (n + p) k} (32)

Since we assume that f(-,-) is concave increasing, 7 (h) is an increasing con-
cave function of h.'® We may now write down the current value Hamiltonian
and the first order necessary conditions for an optimum,

H (h,T,Ar) =7m(h) —cp (h) — D1 (T) — Do (T) + Ar (ap — bpT + crh)
(33)
7' (h) = ¢, = Aper = h = h* (Ap) , B (A\p) >0 (34)
where it is understood in (34) that the inequality conditions of boundary

solutions are included, and

aTr

0 =ap —brT + cph”™ (\p) , T (0) =Ty (35)
d\
d—tT = (p+ br) A\r + a1 T + D}y (T) (36)
_ av(T(1)

We know that since Ap (t) = o) V' (T (t)) < 0 the costate variable
can be interpreted as the shadow cost of temperature. We also know that
if a decentralized representative firm pays an emission tax then the path of
the optimal emission tax is —Ag (t) . We can study that properties of steady
states of problem (30a)-(30d) by analyzing the phase portrait implied by
(35)-(36). The isocline dT'/dt = 0 is easy to draw for (35). Along this

isocline we have T = Cbz*, > 0, by using (34), thus along this isocline Ap
T
is increasing in 7. There is a value Ar. such that if Ay (¢) < Ap. then h* =0

and ap/bp = T. If there are no ice line damages, the d\p/dt isocline is just
a linear decreasing function of 7' that is zero at 7' = 0, or Ay = —ﬁT,
which implies that Ay < 0 for all 7' > 0. Now add the ice line damage to

this function. The isocline is defined as

T+ Dy(T) dAr _ a1+ D, (T)
(p+br) ~ dT (p+br)

Mrlovy_ = (37)
dt

With a gamma function representation of Do (T)), Dy (T') is positive and de-
creasing, it becomes negative, reaches a minimum and vanishes after becom-
ing positive again. This induces a nonlinearity to the d\r/dt = 0 isocline.
In general it is expected that this isocline will have a curved N shape, which
means that with an increasing d7'/dt = 0 isocline if a steady state (T, XT)

Y9Note that 7’ (0) < oo if ¢ > 0 for the alternative “clean” technology.
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exists, there will be either one or three steady states. To study the stability
properties of these steady states we form the Jacobian matrix of (35)-(36)

J (T A7) = < . Jﬁf @ CT:T* +(ApT) > (38)

If at a steady state ay +Dl2/ (T) > 0 so that the d\p/dt = 0 isocline is de-
creasing then det J (T, S\T) < 0 and the steady state is a local saddle point. If
a1 +Dg (T) < 0 so that the dAp/dt = 0 isocline is increasing the steady state
is an unstable spiral.?? Thus when a unique steady state exits it will be a
saddle point. The case of three candidate optimal steady states T} < Ty < T3
is of particular interest. In this case given the shapes of the two isoclines the
smallest one and the largest one are saddles and the middle one is an unsta-
ble spiral. Thus we have a problem much like the lake problem analyzed by
Brock and Starrett (2003). However, Ap (t) = V' (T (¢)) < 0 for our problem
the phase diagram is position at the southeast quadrant Following an argu-
ment much like that in Brock and Starrett (2003) it can be shown (under
modest regularity conditions so that the Hamiltonian is concavo-convex in
T) that there are two value functions, call them, Vipitigate (1) and Vigape (T'),
and a “Skiba” point Ty € (Tl, Tg)such that Vinitigate (Ts) = Vadapt (Ts) and for
To < Ty, it is optimal to follow the costate/state equations associated with
Vimitigate (I') and converge to Ty, while for Ty > T, it is optimal to follow
the costate/state equations associated with Vgap: (T') and converge to Ts.
In Figure 1 we present this situation for an appropriate choice of functional
forms and parameters.?! Besides the solution path the figure also plots the
isocline’s both with and without ice line damages. Without ice line dam-
ages we have the case when the Ap-isocline is a linear decreasing function
of T implying that we get a unique global saddle point at the crossing of
the 5\T = O,T = ( isoclines denoted by T,,. For the case with ice line dam-
ages on the other hand, we get the curved N-shaped Ar, isocline giving us a
“Skiba” point T lying just between the unstable spiral 75 and the local sad-
dle point T3. Hence, for low initial Ty < 77, it will be optimal to levy a low
initial carbon tax even though there is a polar ice cap threat (but it is not
discontinuous as in Oppenheimer and his coauthors’ work) and then grad-
ually increasing the carbon tax along a gradualist policy ramp. However,if
Ty € (Tl, T s) it is optimal to tax carbon higher at Ty and let the tax gradu-
ally fall. But if initial temperature is large enough the ice caps are essentially
already trashed and the optimal thing to do is to tax carbon initially quite
modestly but along an increasing schedule through time to deal with the

0The eigenvalues of J are given by %(p:l:\/Z), where A = p?> +

4 [(al + Dy (T)) erh® +br (br + p)] . When a1 + D (T) > 0 then A < 0 and we have
two complex eigenvalues with postive real parts which implies an unstable spiral.

21 The assumed functional forms, parameters and calculations used in figure 1 are pro-
vided in appendix A.
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Figure 1: Phase diagram for the system (35)-(36).

rising marginal damages due to temperature rise. Figure 1 thus shows how
the qualitative picture changes completely when an appropriate shape for ice
line damage function is considered. In particular, the area T' € (T1,Ty) is of
interest since, if ice line damages go unaccounted for, the optimal strategy
will be levy a low carbon tax which eventually will raise temperature to T},,
while in a model with ice line damages included the exact opposite will be
true implying a decrease in temperature to 77.

It is important to note that this stationary model is not rich enough
to capture the eventual rather sharp increase along the “gradualist” policy
ramp of Nordhaus (2007, 2010) because in Nordhaus’s case the Business as
Usual (BAU) emissions path would be growing because of economic growth.
Thus the damages from temperature rise alone, growing quadratically as the
quantity of emissions grows, would lead to the gradualist path of carbon
taxes “taking” off in the future. However, this simple stationary model does
expose the “new” behavior of a higher initial carbon tax for Ty € (Tl,Ts).
Our runs of the DICE model in section 5 below exhibit a sharply higher
carbon tax at the beginning due to the “extra” ice line damages added to
Nordhaus’s damages.??

*2Note that Nordhaus does include damages from ice melt, but the climate model above
with moving ice line adds another component of ice melt that has a declining marginal
damage function.
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4 Spatial Energy Balance Integrated Assessment
Models

In this section we incorporate the framework of the energy balance models
developed above into a framework similar to well established integrated as-
sessment models (IAMs) such as the DICE/RICE models proposed by Nord-
haus. We use notation close to that of Nordhaus (2010) for the DICE/RICE
part of the model. Consider the continuous time spatial analog of Nordhaus’s
equations (2007 Appendix 1 or 2010, A.1-A.20) where we have made some
changes to be consistent with our notation and have suppressed (z,t) argu-
ments to ease typing, unless (z,t) is needed for clarity,

[e'9) 1
W:/O e '”/0 ¢ (x)U (¢, L) dxdt , U (c,L) = Lu(c) (39)

where L is labour input at at latitude x and time t,, u(c) is utility and
¢ = C/L where C is aggregate consumption at (z,t), and ¢ (x) is a Negishi
weight function.? Furthermore,

Yn:c+i—ff+5z{ (40)
Y, =Q(1-A)Y, Y = AF (K, L) (41)

where, Y, : output of goods and services at latitude x and time ¢, net of
abatement and damages, Q (T (z,t)) : damage function (climate damages as
fraction of output) as a function of temperature at (z,t), A = ¥u® : abate-
ment cost function (abatement costs as fraction of output),.A : total factor
productivity, and F' (K, L) is a standard neoclassical production function,
with K the capital stock at (z,t) and ¢ is the usual depreciation rate of
capital. We assume, as does Nordhaus (2010), full employment of the labor
L(zx,t) in the production function F(K(z,t), L(x,t)).
Aggregate emissions at time ¢ are defined as:

1
E(t):/o o(1—p)Y (z,t)dx (42)

where o : ratio of uncontrolled industrial emissions to output (metric tons
carbon per output at a base year prices), p : emissions-control rate (fraction
of uncontrolled emissions). Climate dynamics in the context of the ECBM

?3The maximization of objective (39) with the “Negishi” ¢ (x)weighting function is a way
of computing a Pareto Optimum competitive equilibrium allocation across latitudes as in
Nordhaus’s discrete time non-spatial formalization in Nordhaus (2010). For a presentation
of the use of the Negishi weights in IAMs see Stanton (2010).
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developed in the previous sections are defined as:

T (z,t) 1
—r = plRS@alra)+ E(t) - A= BT (s,0)+  (43)
o OT (z,t)
D% (1—:172) Bi@x ”

Ts =T (‘TS (t) 7t) (44)

Notice that we have replaced Nordhaus’s climate equations (2010, equa-
tions A.14-A.20) with the spatial climate dynamics, (43), (44). Maximization
of objective (39) subject to the constraints above is a very complicated and
difficult optimal control problem of the PDE (43) on an infinite dimensional
space = € [0,1]. We reduce this problem to a much simpler approximate
problem of the optimal control of a finite number of “modes” using the two
mode approach described earlier.

For the two mode approximation equations 1" (x,t) = Ty (t)+715 (t) P2 (z)
(43), (44). reduce to the pair of ODEs.

1
% = % |:— (A—l—BTo) +/0 Q.S (x)a(a;,a;s (t))dx + FE|,Ty (0) =Too
(45)
% _ % [~ (1+6D) BTo+ (46)
1
5 /0 QSs (2) a (24 (1)) Py (x) dl} Ty (0) = T
Ty (t) + 13 (t) P2 (‘Ts (t)) = T87 Ts = —10°C (47)

Before continuing notice that North’s two mode approximation has re-
duced a problem with a continuum of state variables indexed by z € [0, 1]
to a problem where the climate part has only two state variables. We can
make yet a further simplification by assuming the utility function is linear,
i.e. u(c) = c. This will allow us to write (39) as the MRAP problem:

) 1 00 1
— —pt — —pt —A)—
w /0 e /0 ¢pCdxdt /0 e /0 PIAFQ(1—A) — (p+9) K] dzdt

(48)
Note that for the two mode approximation, the damage function should

be defined as:
QT (2,1)) = Q (Ty () + T5 (1) P (x)) (49)

To ease on the notation we introduce the inner product notation (f,g) =
fol f(x) g () dx. We may now write down the current value Hamiltonian for
the optimal control problem (48) and show how we have drastically simplified
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the problem by using a two mode approximation,2*

H:/Olé[AFQ(l—z/}/ﬁ?)—(p+5)K+%a(l—u)AF dz  (50)

% [(QSa,1) — A— BTy| + % [5(QSa, Py) — (1 +6D) BT]

For the simplified problem (48) the capital stock and the emissions con-
trol rate K* (x,t),u* (x,t) are chosen to maximize H for each (z,t), which
is a relatively simple problem. However there is one complication to be ad-
dressed. The absorption function « (z, x (t)) depends upon the ice line z (t)
where the ice line is given by a solution of (47), i.e.

s (t) = P! <7Ts;2€?)(t)>

Where the subscript “4” denotes the largest inverse function of the quadratic
function P, (x) := (1/2) (32® — 1). Notice that the inverse function is unique
and is the largest one on the set of latitudes [0, 1]. Equation (51) induces a
nonlinear dependence of equations (45) and (46) on through the absorption
function , but no new state variables are introduced by this dependence. An
additional dependence induced by equations (45) and (46) as well as equation
((51) is on the damage function which we parameterize as,

(51)

Q= (To (t),T5 (t) P (z) ;25 (t) , ) (52)

The first term in (52) represents damages to output at latitude x as
a function of average planetary temperature as in Nordhaus (2007,2010),
the second term is an attempt to capture extra damages due to climate
“variance”, Note that the component P§ (z) is larger at * = 0 and = = 1
than it is at the “temperate” latitude = = (1/3)"/? where P$ () is zero. This
is an admittedly crude attempt to capture the component of damages due
to “wetter places getting wetter” and “dryer places getting dryer” as well as
damages to arctic latitudes compared to temperate latitudes. But some of
this dependence can be captured also in the “x” term in the parameterization
(52). Finally the impact on damages at latitude = due to shifts in the ice
line is captured by inclusion of the ice line in (52). This is a fairly flexible
parameterization of spatial effects (i.e. latitude specific effects) that are not
captured in the received non-spatial formulations of integrated assessment
models.

?The important thing to note about this Hamiltonian compared to the Hamiltonian
of the original problem (39) is this. The original problem would generate a Hamiltonian
with a continuum of costate variables one for each € [0, 1]. The two-mode approximation
approach developed could be quite easily extended to an n-mode approximation approach.
Since however North argues that a two mode approximation is quite good, we continue
with a two mode approximation here.
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4.1 Optimal mitigation and location specific policy ramp in
a spatial climate model

Let us first illustrate optimal mitigation using our two mode simplification
of our original “infinite mode” problem with linear utility by considering a
version of the problem where the impact of policy {u (z,t)} on the location
of the ice line x4 (¢) is ignored. Le. there is no ice line dependence of any
functions of the problem including the absorption function «(z,zs (t)).In
this simplified case the albedo function depends only upon z and thus the
terms (QSa, 1), (QSa, P2) do not depend upon Ty (t) , T» (t) in (45) and (46).
Hence the two costate ODEs are also simple,

dho OH ! o0
E—(p—i—l))\o—a?—(p—i—l))\o—/o GAF(1-8) grdn  (53)
Ay OH
99
(,0+1+6D))\2—/ ¢AF(1—A)a—dx
0 2

Wang and Stone (1980) argue that one can even get a fairly good approx-
imation of 75 by exploiting how fast mode 2 converges relative to mode zero
in equation (46) as compared to (45). Hence we approximate by assuming
that 75 has already converged to:

5 (QSCM, P2>

Ty = 22/
>~ (1+6D)B

(55)

for each T (¢).2> The Hamiltonian for the case where and the absorption
function is constant is?®

H= /[ 6 (AFQ (1 — gpr) — (,0+6)K)+%0(1—u)AF d (56)

+ E [Q — A — BTy)] (57)
In this case we obtain the following switching decision rule for p* (x,t)
=0 <
B
) 4] btor —x )l = L2WYBo g
—1 > ) @
Q=0 (T (1), (TP, (2)),z) (59)
oo 1 o0
Mo (f) = / e~ (PHDs—) [ / AFQ (1 — ) 2 | ds (60)
s=t 0 8T

Z5Note that in the case where the absorption function does not depend upon (t) that
the RHS of (55) is constant.

26Note that with a constant absorbtion function, (QSa, 1) = (Q (14 SePs (z)) o, 1) =

(Qa+ QS2aPs (2),1) = (Qa, 1) = Qay, since (QS2aPs (z),1) = 0.
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Suppose some type of institution wanted to implement this social opti-
mum. One way to do it would be to impose a tax 7 (A) = %‘3(0 on emissions

when individual agents solve the static problems

ey {AFQ(1 —tpp) = (p+ 6 K —7(No(l—p)AF}  (61)

We see right away that the first order necessary conditions for the prob-
lem (61) are the same with those resulting from the Hamiltonian function
(56). Hence if F(K, L) is concave increasing in (K, L) which we assume as
usual in economics, then setting 7 (\) = %ﬁ) implements the social op-
timum. Note that the socially optimal emissions tax is uniform across all
locations as one would expect from Nordhaus (2007, 2010).

The reader might ask at this point: What substantive difference does
the spatial climate model coupled to the economic model add that is not
already captured by non-spatial climate models? There are several important
differences regarding policy implications.

The emission reduction policy ramp p* (x,t), is location specific and
dictates p* (x,t) = 1 for all (x,t) where the relative “Negishi” weight ¢ ()
on welfare at that location is small (recall that fol ¢ (z) dx = 1 by normal-
ization). For example, if a Rawlsian social objective is imposed, as men-
tioned in the introduction, where the social welfare of the worst off lati-
tude, call it 2%, is maximized, then ¢ (z) = 0 for all latitudes different then
20, Hence all latitudes other than ° would be immediately ordered to re-
duce their emissions to zero. Consider a more plausible scenario. Assume
that Q = Q (TO (), (ToPs (2))? ,a:) =Q (To (), (ToPy (:17))2) is decreasing
in both arguments. This crudely captures the idea that damages increase
at each latitude as average planetary temperature, Ty (¢) increases and as a
measure of local climate “variance” (ThP; () increases. Let R denote a set
of “at risk latitudes” with low values of €2 (TO (), (Ta P (:1:))2), i.e. with high
values of the arguments. The set R is a crude attempt to capture latitudes
that would be relatively most damaged by climate change. A more plausible
type of “Rawlsian” objective would be to solve the social problem above but
with ¢ (x) > 0,z € R, ¢ (x) = 0,2 ¢ R . We see right away that this social
problem would require all x’s not in R to reduce all emissions immediately.
In general we have,

W (@) = 1, for — o (t) > %Q (62)
and vice versa. This makes good economic sense. The marginal social burden
on the planet as a whole of a unit of emissions at date ¢, no matter from
which x it emanates is, —Ag (¢). Locations = where the “Negishi” weight
on the location is small, where emissions per unit of output are relatively
large (relatively large o (z)), and that are already relatively heavily damaged
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(Q <T0 (), (TP (2))? ,a;) is high ) are ordered to stop emitting. Thus our
modeling allows plausible specifications of the economic justice argument
stemming from geography to shape policy rules.

Furthermore, we can use this framework to extend our results to the
presence of an ice line with an absorption function that changes at the ice
line. This is a more realistic model which introduces ice line damages and
which we develop in the context of a DICE/RICE-type integrated assessment
model

4.2 Optimal mitigation in a spatial IAM-type climate model

We introduce now as the absorption function the version proposed in North
(North (1975a)) where

a1 =038 x>z,
ag=0.68 x < x4

a(z,zs)=1—a(z) = { (63)
where « (z) is the albedo. With this absorption function the dynamics Tj (t)

in (45) and the 75 approximation in (55) become respectively

dly 1 v=es(?)
AT BT Qe -a) [ (14 SaPa (@) do + B+ Qu
z=0
(64)
Ty — T 4 8Py (1) o (1) d S
= oprE Q) [ (14 S8R @) R@)dr +QuiSs
(65)
where the equation for the ice line is, using (51):
o [2E=ho 1 2 (66)
BT 3

The objective (39) and the constraints (63)-(66) determine optimal mit-
igation over time and latitude. The discontinuous absorption function can
create a strong nonlinearity where a small change in Ty can cause a large
change in damages at some latitudes. This nonlinearity makes however dif-
ficult to proceed with analytical solutions. To obtain a qualitative idea of
impact of the nonlinearity due to the absorption function and the ice line
we use the climate parametrization used by North (1975a) (ap = 0.68, 1 =
0.38, A = 201.4,B = 1.45,59 = —0.483,Ts = —10,Q = 334.4). The heat
transport coefficient D is found to be approximately 0.2214 by calibrating
the ice line function to the current ice line estimate (zs = 0.95).27

?"The calibration procedure is explained in detail by North (1975b) p.2035-2037.
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The system (64)-(66) is highly non-linear and can be simplified by deriv-
ing a polynomial approximation of s as a function of Ty(t). We proceed in
the following way. If we substitute x4 (¢) from (66) into (65), then T5 results
as a fixed point of (65). We solve numerically the fixed point problem (65)
for values of Ty € [—Tp, Ty| ,obtaining the solution Ty(Ty). Substituting this
back into equation (66) gives us the @4(75(Tp), Tp) which is then used to fit
using least squares, a quadratic curve on (7, Z5). Thus & is approximated
by a convex curve 5 = (o + (170 + &Iy = ¢ (To), (o, €1, ¢2) > 0,28 Making
use of this approximation the system (64)-(66) can thus be written as:

dTy 1

—- = 5 [-(A+BT) + Q(ap — 01)0(Tp) + E + Qo] (68)

where H(T()) = T+ %(i‘g — :ﬁs) with Zs := (o + (T + <2T02
The optimization problem can also be further be simplified, without loosing
the major points of our arguments, by assuming constant

labor force normalized at L = 1, no technical change, and a Cobb-Douglas
production function ¥ = K”, 0 < 8 < 1. The Hamiltonian can thus be
written as:

1 )\0
H :/ [(ZSKBQ(TO) (1 =) = (p+0) K + Ea(l —p)KP|dzx  (69)
0

Ao

B

Note that the functions under the integral do not explicitly depend on =z

except ¢ (x) and possibly v (z) if abatement costs are site specific. Assume

that ¢ (x) = 1. Then since fol ¢ (x)dx = 1, the optimal p and K will be
defined as:

[—A — BTy + Q(ao — a1)8(Tp) + Qv

K= (250 . 1) (1= o) ~ o 1) T
and the canonical system is:
% = [~A~ BTy + Qlan — an)0(T) + (1 — u*) K] (72)

= (o4 1 Blao - a0 (@) b [KP @) - )] (7

2 The estimated quadratic function was
&5 = 0.7126 + 0.0098T, + 0.0003T5 , R* = 0.99 (67)

All coefficients are statistically significant at 1% level.
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To proceed further we need a more detailed specification for the damage
function, which as explained above should contain a ’temperature compo-
nent’ denoted by D; (Tp) and an ’ice line component’, denoted by Ds (Tp) .
We specify the damage function in the following way.

Lost output from temperature induced damages is: Y — HDLl(,TO) =
YDi(To) .
1+D1(To) "~ Yd, (Tp)

Lost output from ice line moving towards the poles written as a function

fa Y _ YDy(Tp) ._
of Ty is: Y — rpry = toiray = Yda (Tp)
The sum of lost output from both sources is: LostY = Yd; (Tp) +
Yds (Tp) .
Thus net output available for consumption and mitigation is: Y —LostY =
(1 —dy (To) — d2 (T0)) Y-
If we define Q; (To) = 17,75y = 1,2, then the term (1 — di (Tp) — da (Tp))

can be written as the damage function  of the system (70)-(73) in the form
Q(To) = Q1 (To) + Q2 (Tp) — 1 (74)

As the global warming problem concerns damages resulting from tempera-
ture increases, rather than decreases, we restrict the state space to include
only temperatures Ty > 15°C i.e. in the vicinity of the present average
global temperature level.? In the spatial model used in this section this
temperature level is found by setting = 0 and solving (68), which gives us
Th ~ 15.27. Hence, 15°C' can thus be thought of as a rough ballpark esti-
mate of the preindustrial global temperature average. Damages are assumed
to start at 15°C and we will thus write our normalized damage function as
Q(Tp — 15). Further we will use the same functional forms for the damage
functions as used in section 3.30

The energy balance spatial climate model that we presented in this sec-
tion as the result of the concepts developed in the earlier part of the paper,
has many similarities to the traditional TAMs but also two potentially im-
portant differences. The first is that the discontinuous absorption function
and the ice line introduce a nonlinear term in the temperature dynamics,
the second is that ice line damages are included in addition to temperature
damages. The question of whether these differences imply significant devia-
tions of the models’ predictions, cannot be answered analytically due to the
high complexity of the models. So we are resorting to simulations.

Figure 2 shows the results for the spatial climate model we have present
in this section. As in section 3 this model also gives us 3 candidate optimal

During the development of many energy balance models in the 1960’s and 70’s the
main concern was usually not that of global warming but rather that of global cooling
that could result due to a slight decrease in the solar constant.

39The parameters estimates are taken to be p = 0.02,a1 = 0.09,a2 = 0.5,Y = 1,¢ =
0.1,0 = 0.001 and the temperature and ice line components are Di(Tp) = alTO2 and
DQ(TO) = a2672T0T02.
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Figure 2: Phase diagram for the system (72)-(73).

steady states Ty, < Tpa < Tp3 where the largest and the smallest ones are
saddles while the middle one is an unstable spiral.3! Between the unstable
spiral T» and the saddle T3 we have a Skiba point 7T, similar to that of
section 3.32 Hence, for low initial temperatures Tpg < 77 a low but gradually
increasing carbon tax is optimal, while for Tyg < Ts we get the case where it
is optimal to levy a high carbon tax at Tyg and then gradually decrease it.
Further, the figure also depicts the case when ice line damages are omitted
T,. As opposed to section 3 both of the isocline’s are now affected and in
order to to keep the figure from getting too messy we have chosen only to plot
the single equilibrium at the crossing of these isocline’s, which is denoted by
the black dot at T}, of figure 2. The qualitative behavior is however the same
as in section 3, i.e. the no iceline damage equilibrium is a saddle having a
positive slope for the T-isocline and a negative slope for the M-isocline.

31The corresponding eigenvalues are approximated numerically as e =
[—0.3974,0.4174], eo2 = [0.0100 £ 0.20457] and ep3 = [—0.1946, 0.2146].

32Qreiner, Griine and Semmler (2009) find multiple equilibria in a zero-dimensional
EBM, where albedo is modeled by a continuous S-shaped function of temperature. The
derived multiple-equilibria and Skiba planes, however, only apply for fixed levels of abate-
ment i.e. there is just a single control variable (consumption). If however, the social
planner can control both consumption and abatement then there exists only a single
stable saddle. Our approach apart from explicitly addressing the more appropriate one-
dimensional model also differ in the sense that we obtain multiple equilibria and Skiba
points when controlling both consumption and abatement.
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5 DICE model results with ice line damages

Both the relative simple model of section 3 and the more complex model of
section 4 strongly suggest that the implications of explicitly modeling ice line
damages is to call for strong mitigation now. In order to further demonstrate
that this result is robust to the choice of model we now turn to the DICE
model. The purpose of this exercise is to show how the introduction of ice line
damages into the damage function, along the lines suggested by the EBCMs
will affect the optimal emission policy implied by DICE the most well know of
the IAMs. The DICE model assumes that all damages to the economy evolve
according to the quadratic equation (A.5) of Nordhaus (2007). This equation
has been calibrated to a 2.5 degree warming based upon an aggregate of
impact studies from a variety of different sources.?®* In order to separate
out the ice line component from the total amount of damages we follow the
procedure shown in section 4.2. We thus simply replace (A.5) with equation
(74) from this section. Hence, we have two separate damage components
D1 (T) and Dy(T') that can be calibrated independently according to different
impact assessments. Nordhaus (2007) finds the aggregate impact of a 2.5
degree warming to be roughly 2% of GDP. Since, it is not possible to back
out exactly how much of this 2% fall in GDP from a 2.5 degree warming
is due to ice line specific damages, we simply make a crude assumption
that approximately 50% of these damages are attributable to the ice line
component Dy(T).3* Next, we make the following assumptions regarding
the shapes of the temperature and ice line specific components, i.e. we
set Di(T) = a;T° and Do(T) = aze”?"T?. In a manner consistent with
Nordhaus (2007) we then proceed by calibrating the parameters a; and asg
so that D;1(2.5) = 0.01 and D2(2.5) = 0.01. In this way our new damage
function produces an equivalent amount of damage at a 2.5 degree warming
as in the original model but will differ for all other temperature levels. This
new damage function thus has the property that the temperature component,
having a larger exponent than the original quadratic function, punishes GDP
to much larger extent when temperature levels start to rise above 3 degrees.
When temperature levels on the other hand are lower, the damages from the
35 Figure 3 plots the optimal emission
control rate the DICE model when ice line damages are accounted for. As
can be seen from this graph the separation of different damage structures
gives us a U-shaped policy where it is mitigate harder initially as opposed

ice line are the ones that dominate.

33See Nordhaus (2007) accompanying notes (p.23-25).

340n page 24 of the accompanying notes of the DICE 2007 model there is an impact
assessment by region and impact type. These are then weighted based on GDP estimates
for 2105. As these weights are not provided it is thus not possible to back out a specific
region or impact type.

35See Ackerman et. al. (2003) for a discussion regarding different values for the
exponent of the damage function used in DICE.
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Figure 3: Optimal emission control rate with and without ice line damages.

to the normal gradualist policy. Although, these results are specific to our
assumptions regarding the shape of the assumed damage function for the ice
line as well as the temperature component, it still exemplifies the sensitivity
of the model to structural changes in the damage function and the impact
of incorporating insights from energy balance models..

6 Summary, Conclusions, and Suggestions for Fu-
ture Research

In this paper we introduce the economics profession to spatial Energy Bal-
ance Climate Models (EBCM’s) and show how to couple them to economic
models and still obtain analytical results of interest to economists and policy
makers. While we believe this contribution is of importance in its own right,
we also show how introduction of spatial considerations leads to new ways
of looking at climate policy.

In particular by accounting for an endogenous ice line and the associated
ice line damages, and a discontinuous albedo we show that due to non-
lineraities even simple economic-EBCMs generated multiple steady states
and policy ramps which do not in general follow the ‘gradualist’ predictions.
These results carry over to more complex models where the economic module
has an IAM structure. The interesting issue from the emergence of multiple
steady states, is that when endogenous ice line and discontinuous albedo
are ignored, as in traditional IAMs, the policy prescription of these models
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could be the opposite of the policy dictated by the economic-EBC models.
Furthermore the spatial aspect of the EBCMs allows economic justice ar-
gument associated with the spatial structure of climate change damages to
shape policy rules. When we applied the damage function implied by the
EBCMs and calibrated appropriately into the standard DICE model and
run the simulations the result was a U-shaped policy ramp which indicates
an important deviation from the gradualist policy ramp derived from the
standard DICE model. Thus a rapid mitigation policy can be justified on
the new insights obtained by coupling the economy with the EBCMs.

We consider this paper as a first attempt to bring together EBCMs and
economic models and to show how these models provide new insights which
have not been obtained by the traditional IAMs, and furthermore that these
new insights could be important for policy design. Being a first attempt
also means that there are many areas for future research. These areas range
from making the economics more sophisticated by abandoning the simpli-
fying assumption of linear utility; allowing for technical change and knowl-
edge spillovers across latitudes; or introducing strategic interactions among
regions,® to extending the EBCMs. Future work that needs to be done re-
garding EBCMs is extension to two dimensional spherical EBCM’s because
Earth is a sphere, not a line. Brock and Judd (2010) are attempting to make
a dent in this problem. They frame the problem as a recursive dynamic pro-
gramming problem where the state vector includes a number of “spherical
modes” that are analogs of the modes in this paper as well as economic state
variables. Another possible extension could be the consideration of new pol-
icy instruments. Emissions reduction acts on the outgoing radiation in the
sense that by reducing emissions the outgoing radiation increases through
the second term of the right hand side of (2). Another kind of policy could
act on the first term of the right hand side of (2) in the sense of reducing the
incoming radiation. This type of policy might be associated with geoengi-
neering options. Finally a policy which acts on the damage function in the
sense of reducing damages for any given level of temperature and radiation
balance might be associated with adaptations options. Unified economic-
EBCMs might be a useful vehicle for analyzing the structure and the trade
offs among these different policy options.

36These extensions will undoubtedly increase the complexity and the computational
needs for solving the economic-EBCMs.
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Appendix 1: The two mode solution
In this appendix we show how to derive the two mode solution (8)-(16).
We start with the basic PDE

% =QS (z,t) a(z,zs (t)—[I (x,t) — h (a:,t)]—FDZ% (1- mz) 81(;575)
(75)
The two mode solution is defined as:
x? —
j($7t)ZIo(t)+I2(t)P2($)=P2(l’)=% (76)
then
ol (l‘,t) . d[(] (t) d[g (t)
ot dt a 2@ ()
o égf; ) dpix(x) = I, (t) 3z (78)
Substitute the above derivatives into (75) to obtain:
O O b, )= Qs 1) 0 (24 (1) - (79)
o (t) + I () Py (z) — h (2, £)] + D% (1—a?) I (t) apgx("’) or
O O p, () = Q8 (1) a2, (1) - (80)
Iy (t) = I2 (t) P2 (z) + h(x,t) — 6DIz (t) P2 ()
Use:
! 5nm
/0 P (&) P () d = (Po (2), P (2) = 522 (81)

Onm =0 for n £ m,0pm =1forn=1

2_
and note that Py (z) =1, Py (z) = (39”2 1)

Multiply (80) by Py (x) and integrate from 1, 0 to obtain

1
dfsz _|_dfzt(t) (Py (2), Py (2)) = /0 QS (.1) (.24 (1)) Py () dir—

(52)
1
IO (t) — [2 (t) (PO (a;) ,Pg (LZ')> + /0 h (a;, t) da:—
6D[2 (t) (PO (a;) ,Pg (a;)> ,0r
1
dlgt(t) — L)+ /0 QS (2.1) o (2,75 (8)) + b (1)) da (83)
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Multiply (80) by P» (x) and integrate from 1, 0 noting that fol Py (z)dr =0,
and (P, (z), P (z)) = £ to obtain

1
B [ ) e+ T2 (1 0, Pa(o) = 54
1
/0 QS (. 8) a (, 24 (1)) Py (z) do— (85)
1
Io (1) / Py (2)dx — I (1) (Py (), P () — (86)
0

1
/0 h () Py () dz — 6D15 (£) (Py (), Py (x)) ,or

1
édlzze( .- Vo QS (z.t) o (z, 74 () + I <w,t>] P, (z) dz—

1
£D (1) - gmg () or

dl (t)
dt

1
=—(1+6D) I (t)+ 5/0 QS (z,t) a(x, x5 (t) + h(z,1)] P (x) dx
(87)

The ODEs (83) and (87) are the ODEs (9), (11) of the two mode solution
(8)-(16). The solutions of these ODEs shown in (10) and (13) follow from
standard methods.
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Appendix 2

This section drafts some of the more specific assumptions on which figure 1
is based. The production function in (32) is assumed to take the following
form:

flk = ko, h+ ¢ha) = (k — k)™ (h + dk2))’ (88)

with @ > 0,3 > 0. The solution to problem (32) is derived from the first
order conditions:

of

o5 = ok~ ko) (b + ¢k2))? — (n+p) =0 (59)
aa—]i = —a(k — k2)* N (h + ¢ka))? + Bo(k — k)™ (h + dk2))’ "L =0 (90)

Solving the system (89) and (90) for k and ks gives the solution to problem

(32).
vy L ftp) [a\° =iy
k“’”‘%( () ) e

o= 1+

Plugging these values back into (32) allows us to write 7(h) as a linear
function of h:

m(h) = A+ Bh

with

4= <%>°‘ <(n;:p) (%)1_(1) o —(n+p)(1;¢) ((77;-,0) <5_ﬁ>1‘°‘)‘*11+ﬁ
B=—(+p) ((%_ (1;@)

which is increasing in h given that o/ < (1 + ¢). Assuming also that
D1(T) = 0.5a1T?, Do(T) = ag exp(—2T)T? and c(h) = ¢, h?, where a1, as, cj, >
0.37 Substituting this into (33) and using the first order condition we can
thus derive the canonical system:

dT B+ Arer

7 ar —ord +cr 2% , T(0) 0 (91)
d\
d—tT = (p+br) A\r + a1 T — 2a0e " (T = 1)T (92)

3"Note that these functions have the properties described in section 3.
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From (91) and (92) it is easy to confirm the shape of the isoclines depicted in
figure 1. For the numerical calculations of the solution paths and the Skiba
point we used a numerical methods described in Grass (2008, 2010). The
parameter values used for the numerical calculations are given in the table
below:

Parameter Value Description

p 0.02 discount rate

«a 0.3 marginal productivity of capital

Ié) 0.6 marginal productivity of energy

i 0.1 depreciation rate of capital

0] 0.9 efficiency parameter of clean energy
ap 0.09 damage parameter of D;(T)

as 0.7 damage parameter of Dy (T)

s 0 parameter of the scrap value function
ar 0.8 parameter of temperature equation
br 0.6 parameter of temperature equation
cr 0.85 parameter of temperature equation

Table 1: The parameter values for figure 1.
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