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Energy balan
e 
limate models and the e
onomi
sof 
limate 
hangeWilliam A. Bro
k∗, Gustav Engström†‡and Anastasios Xepapadeas§January 26, 2011Abstra
tSpatial energy balan
e models are used by 
limate s
ientists tohelp understand 
limate dynami
s and to assist 
onstru
tion of more
omplex general 
ir
ulation models and to explain the output of su
hmodels. In this paper we present the �rst, to our knowledge, 
oupledspatial energy balan
e and e
onomi
 growth model. We show how thespatial aspe
ts of 
limate dynami
s 
aptured by our model leads tonew insights on: (i) The 
ontentious issue of whether a gradualist ap-proa
h to mitigation of 
limate 
hange by, for example, 
arbon taxesis preferable to an initially more aggressive approa
h, (ii) The e�e
t ofmelting polar i
e 
aps on optimal poli
y, (iii) Robustness of optimal
limate poli
y to spatial damage un
ertainty, and (iv) E
onomi
 justi
e
onsiderations raised by variation in spatial damages, e.g. variation inlatitude spe
i�
 damages . For example the endogenously moving i
eline of shrinking polar i
e 
aps in our model leads to initially a moreaggressive poli
y ramp followed by a less aggressive segment followedby a similar ramp as poli
y ramps of the gradualist type.Keywords: Spatial energy balan
e models, 
limate 
hange, i
e line, e
o-nomi
 growth1 Introdu
tionThis paper presents the �rst, to our knowledge, 
oupled spatial energy bal-an
e 
limate model (EBCM) integrated with an e
onomi
 growth model.It introdu
es solution methods for spatial 
limate models that may be new
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to e
onomi
s and it integrates these methods with the standard methodsof solving e
onomi
 models. Before we pro
eed further we believe that itis useful to point out why this is worth doing by providing an importantexample at the outset.It appears that mu
h of the 
urrent s
ienti�
 dis
ussion about 
limate
hange 
on
entrates around the 
al
ulation of the true 
osts of global 
limate
hange and the impli
ations of these 
al
ulations for poli
y design, an issuewhi
h relates dire
tly to the de
ision to undertake or not poli
y a
tion andits time pro�le. It seems that among e
onomists there is no longer a debateon whether a
tion should be taken or not. Carey (2011) quotes Mendelsohnas stating that:"The debate is how mu
h and when to start. If you believe thatthere are large damages, you would want more drasti
 immedi-ate a
tion. The Nordhaus 
amp, however, says we would startmodestly and get tougher over time".Thus the debate among e
onomists in dealing with 
limate 
hange on themitigation side has basi
ally settled on whether to in
rease mitigation e�orts(e.g. 
arbon taxes) gradually (e.g. Nordhaus (2007, 2010, 2011)) versusthose who believe we should mitigate rapidly. Stern (2006) justi�es the 
allfor immediate a
tion on the normative grounds of using a low dis
ount rateto dis
ount the future 
osts of 
limate 
hange. Weitzman (2009a) and in hisrebuttal of Nordhaus (Weitzman , 2009b) argues that the possibility of lowprobability 
limate 
atastrophes strengthens the 
ase for qui
k a
tion nowto mitigate potential 
atastrophi
 
limate 
hange. His argument is basedon bad fat tails in the distribution of future damages from 
limate 
hange.Sterner and Persson (2010) justify strong and urgent a
tion by a

ountingfor non-market damages from 
limate 
hange, while Weitzman (2010) basedon two risk aversion axioms dis
usses poli
y impli
ations stemming from thedistin
tion between additive and multipli
ative dis-utility damages.1This paper attempts to provide new insights regarding the debate of�how mu
h and when to start� using as starting point the temporal andthe spatial stru
ture of damages from 
limate 
hange whi
h is implied bythe s
ien
e of 
limate 
hange, without resorting to arguments regarding the
hoi
e of the dis
ount rate, the stru
ture of un
ertainty, or the rising relativepri
es for environmental amenities. Although all these fa
tors are importantin de
iding �how mu
h and when to start�, we believe that by framing theproblem in a way that 
limate s
ien
e implies the stru
ture, the spatial, andthe time pro�le of damages provides a sound and potentially empiri
allyjusti�ed approa
h to poli
y making.1Judd and Lontzek (2011) have formulated a dynami
 sto
hasti
 version of DICEwhi
h they 
all, DSICE. They also extend their model to in
lude sto
hasti
 tipping pointpossibilities. They show how this additional real world 
omplexity substantially a�e
tsthe optimal poli
y results in 
omparison to DICE2



Thus the 
oupling of dynami
 e
onomi
 growth models with dynami
spatial EBCMs that we undertake in this paper enables us, as we will make
lear in the rest of the paper, to obtain new insights about the intertemporalshape and the spatial shape of the distribution fun
tion of damages and totranslate these insights into poli
y rules regarding the time and spatial pathsof mitigation e�orts.2A popular 
lass of EBCMs are the models of North (North (1975a),North (1975b)), North, Cahalan and Coakely (1981), and Wu and North(2007).3 Although the EBCMs that we use are simple 
limate models, manyuseful insights into 
limate dynami
s 
an arise from these simple models(Pierrehumbert , 2010). A large 
lass of the EBCMs whi
h we fo
us upon,have an endogenous i
e line where latitudes north (south) of the i
e line aresolid i
e and latitudes south (north) of the i
e line are i
e free. There hasbeen a lot of 
on
ern about the e�e
ts of i
e melting, i.e. the i
e lines beingpushed 
loser to the North and South Poles by global warming,4 and thein
orporation of these e�e
ts into e
onomi
 models might e�e
t de
isions toengage in large mitigation e�orts now.To be more pre
ise, when the i
e lines move 
loser to the poles marginaldamages from moving will be large at �rst and then diminish as the i
eline approa
hes the Poles. This makes sense. When there is a lot of i
eto melt the damages would be larger than when there is almost no i
e leftto melt. Hen
e the marginal damages plausibly are higher when the polari
e 
aps are larger. To put it another way the potential damages from i
emelt should be larger when there's a larger sour
e of i
e to melt. Let usexplain this argument in more detail. Suppose human e�e
ts are 
ausingthe i
e lines to move 
loser to the Poles. Suppose damages from this e�e
tare proportional to the amount of i
e melting. Let x denote the sine of thelatitude as in North (1975a,b) and assume that the i
e line is at latitude
xs from the North Pole (at the the North Pole x = 1). Let us 
onsidernow damages from moving the i
e line by dx towards the North Pole. Thei
e area lost in the Northern Hemisphere when the Northern i
e line is at
xs is approximately proportional to 2π (1 − xs) dx for small dx. Thus ashuman a
tivities move the i
e line towards the North Pole the i
e area lostdiminishes and marginal damages diminish also.5 The argument of i
e line2We hasten to add that the basi
 argument of e
onomists, e.g., Nordhaus (2007), thattaxing 
arbon in a harmonized manner is the e�
ient poli
y still stands in our spatialsetting.3See also the book by Pierrehumbert (2010) that 
overs in a very ni
e way the generalprin
iples of planetary 
limate as well as 
limate models in
luding EBCMs.4Of 
ourse these simple models do not 
apture elements of potentially abrupt 
hangesin i
e melting and its impa
t on 
oastlines that are stressed by, for example, Mi
haelOppenheimer and his 
o-authors (Oppenheimer (2000, 2005), Little, Gnanadesikan andOppenheimer (2009), but nevertheless they provide useful insight into the expe
ted e�e
tsof 
limate 
hange.5Of 
ourse these damages whi
h are larger for larger i
e 
aps and shrink as the i
e3



dynami
s, whi
h was just sket
hed above but will be analyzed in detail inthe paper, supports arguments for rapid ramping up of mitigation e�orts(e.g. Weitzman, Stern) and is suggestive of the value added from developinguni�ed e
onomi
 and energy balan
e 
limate models.Another issue that e
onomi
-EBCMs 
ould provide new insights relatesto the argument that the gradualist poli
y ramp may not be robust to otherplausible spe
i�
ations is the e
onomi
 justi
e argument of Rawls, i.e. thatglobal poli
y should be to maximize the welfare of the worst o� region.For example, Nordhaus (2007) and Dell, Jones and Olken (2008) pointout that poorer (and more tropi
al) regions are proje
ted to su�er moredamages from 
limate 
hange than wealthier (and more temperate) regions.A Rawlsian obje
tive would maximize the welfare of the least well o� region.In our spatial model this obje
tive 
ould be formalized by maximization ofthe least well o� latitude.6 7Remaining with the spatial aspe
ts of the EBCMs this is a good pointto further dis
uss what kinds of questions we may hope to address with aspatial 
limate model in 
oupled 
limate e
onomi
 modeling that 
an not beaddressed with models like that of Nordhaus (2007, 2010). For example,Nordhaus's RICE 2010 divides the world into US, EU, Japan, Russia, Eura-sia, China, India, Middle East, Afri
a, Latin Ameri
a, Other high in
ome,Other developing Asia. The 
limate dynami
s of RICE 2010 are�mass of 
arbon in reservoir for atmosphere, upper o
eans, andlower o
eans,. . . global mean surfa
e temperature, of upper o
eans,temperature of lower o
eans.� Nordhaus (2010)Dynami
s of these quantities are distributed lag equations of past quan-tities and the global mean surfa
e temperature dynami
s is also a fun
tionof 
urrent radiative for
ing, but there is no spatial geography. It is probablyuseful to think of Nordhaus's quantities on the 
limate side of the modelas some sort of aggregates over spatial dimensions. In his book, Nordhaus(2007) states that the damage fun
tions 
ontinue to be a major sour
e of
aps shrink are just the damages 
aused by the release of water from the thawing i
e, i.e.the rise in sea levels 
aused by thawing i
e. There may be other damages 
aused by thein
reasing loss of the i
e 
aps and their role in regulating the 
limate.6To do a more a

urate job of �nding the optimal poli
y ramp of, say, 
arbon taxes,under a Rawlsian obje
tive, .we would need a spheri
al two dimensional model like thatof Bro
k and Judd (2010). However the one dimensional models 
onsidered here provideuseful insights without the 
omplexity of two dimensional models.7Rawlsian obje
tives may strike the reader as rather �starry eyed� from the point of viewof wealthier parts of the world. However, elements su
h as national se
urity 
on
erns maydrive enlightened self interest on the part of wealthier regions to a
t more like Rawlsians.At the very minimum one should design poli
y to be robust against un
ertainty in thespe
i�
ation of the proper poli
y obje
tive fun
tion as well as un
ertainty in 
limate ande
onomi
 dynami
s. 4



modeling un
ertainty in the DICE model. A re
ent study of 
limate dam-ages due to temperature and pre
ipitation 
hanges is Dell, Jones and Olken(2008) whi
h found that levels and growth rates of the e
onomies of poorerparts of the world were damaged more than levels and growth rates of thewealthier parts of the world. The wetter regions of the world are expe
tedto be
ome wetter and the dryer regions of the world are expe
ted to be
omedryer (GFDL, 2008). We proxy this kind of e�e
t of 
limate 
hange in thispaper by a damage fun
tion for an area A where damages in
rease as meanarea A temperature in
reases and varian
e area A temperature in
reases.More will be said about this below.To summarize we believe that the main 
ontribution of our paper is to
ouple spatial 
limate models with endogenous i
e lines, with e
onomi
 mod-els, and use these spatial 
limate s
ien
e models to dis
ipline the stru
tureand the shape of potential damage fun
tions, in order to provide new insightsregarding the optimal time pro�le for 
urrent and future mitigation. To putit another way this paper 
ouples the e
onomi
 models we use all the time ine
onomi
s with a 
lass of spatial 
limate models used by 
limate s
ientists.We believe this endeavor apart from being valuable in its own right, providesnew insights regarding the temporal and spatial paths of poli
ies designedto address 
limate 
hange .Sin
e energy models are new in e
onomi
s we pro
eed in steps that webelieve make this methodology a

essible to e
onomists. In se
tion 2 wepresent a basi
 energy balan
e 
limate model8 whi
h in
orporates humanimpa
ts on 
limate. In developing the model we follow North (1975a,b)and use his notation. We use the model to expose solution methods andespe
ially the two mode approa
h whi
h transforms the systems of partialdi�erential equations (PDEs) in in�nite dimensional spa
es resulting fromspatial modelling, to systems of ordinary di�erential equations (ODEs) in �-nite dimensional spa
es. The two mode approa
h will be extensively used tosolve the integrated e
onomi
-EBC model. In se
tion 3 we 
ouple a simpli-�ed version of the energy balan
e model, with a simple e
onomi
 model andshow that i
e line damages expli
itly introdu
ed through the EBCMs, sug-gest even at this very simple level, the possibility of multiple steady states,history dependen
e in the optimal paths and rapid now, instead of gradualmitigation. Se
tion 4 uses the insights of the previous se
tions to 
ouple aspatial EBCM with an e
onomi
 model that has the stru
ture of the wellknown integrated assessment model RICE. We use this approa
h to dis
iplinethe temporal and spatial shape of the damage fun
tion. In this more tradi-tional, on the part of the e
onomi
s, modeling we obtain results similar tothe more simpli�ed model of se
tion 3, regarding multiple steady states and8For more on EBCMs see for example Pierrehumbert (2010) (
hapters 3 and 9, es-pe
ially se
tions 9.2.5 and 9.2.6 and surrounding material). North, Cahalan and Coakely(1981) is a very informative review of EBCM's. while Wu and North (2007) is a veryre
ent paper on EBCM's. 5



history dependen
e of the optimal paths, and insights about the spatial andtemporal stru
ture of optimal mitigation poli
ies. Motivated by this mod-elling exer
ise we turn, in se
tion 5 in analyzing DICE, the most popular ofthe integrated assessment models, in the 
ontext of damage fun
tion impliedby our approa
h. We provide numeri
al results by running the DICE modelwith expli
it i
e line damages whi
h have a time pro�le 
onsistent with thepro�le implied by the EBCMs we developed in this paper. Our numeri
alresults suggest that U-shaped poli
y ramps where we mitigate rapidly at thebeginning to defend against the i
e-
ap loss, we slow down as damages fromthe i
e 
aps are redu
ed and then in
rease mitigation as damages from theoverall in
rease in temperature dominate, 
ould be optimal poli
ies. The�nal se
tion 
on
ludes.2 A Basi
 Energy Balan
e Climate ModelIn this se
tion we develop a one-dimensional Energy Balan
e Climate Modelwith human inputs. The term `one-dimensional' means that there is anexpli
it one dimensional spatial dimension in the model so that our uni�edmodel of the 
limate and the e
onomy evolves both in time and spa
e. Wefollow North (1975a,b) and North, Cahalan and Coakely (1981) in thisdevelopment.Let x to denote the sine of the latitude. We shall abuse language andjust refer to x as �latitude�. Following North (1975a,b) let I(x, t) denoteoutgoing infrared radiation �ux measured in W/m2 at latitude x at time t,
T (x, t) denote surfa
e (sea level) temperature measured in oC at latitude xat time t. The outgoing radiation and surfa
e temperature 
an be relatedthrough the empiri
al formula.9

I(x, t) = A+BT (x, t), A = 201.4W/m2, B = 1.45W/m2 (1)Following North (North (1975a), equation (29)) the basi
 energy balan
eequation with a human input 
an be written as:
∂I (x, t)

∂t
= QS (x, t)α (x, xs (t))−[I (x, t) − h (x, t)]+D

∂

∂x

[

(

1 − x2
) ∂I (x.t)

∂x

](2)where units of x are 
hosen so that x = 0 denotes the Equator, x = 1denotes the North Pole, and x = −1 denotes the South Pole; Q is the solar9It is important to note that the original Budyko (1969) formulation 
ited by Northparameterizes A, B as fun
tions of fra
tion 
loud 
over and other parameters of the 
limatesystem. North (1975b) points out that due to nonhomogeneous 
loudiness A and B shouldbe fun
tions of x. There is apparently a lot of un
ertainty involving the impa
t of 
louddynami
s (e.g. Trenberth et. al. (2010) versus Lindzen and Choi (2009)). Hen
e robust
ontrol in whi
h A, B are treated as un
ertain may be 
alled for but this is left for furtherresear
h.. 6




onstant10 divided by 4; S (x, t) is the mean annual meridional distributionof solar radiation whi
h is normalized so that its integral from 0 to 1 is unity;
α (x, xs (t)) is the absorption 
oe�
ient whi
h is one minus the albedo of theearth-atmosphere system, with xs (t) being the latitude of the i
e line at time
t; and (2) D is a thermal di�usion 
oe�
ient that it has been 
omputed as
D = 0.649Wm−2oC−1 (North, Cahalan and Coakely (1981))Equation (2) states that the rate of 
hange of outgoing radiation isdetermined by the di�eren
e between the in
oming absorbed radiant heat
QS (x, t)α (x, xs (t)) and the outgoing radiation [I (x, t) − h (x, t)] . Note thatthe outgoing radiation is redu
ed by the human input h (x, t) . Thus the hu-man input at time t and latitude x, 
an be interpreted as the generationof greenhouses gases (GHGs) that redu
e outgoing radiation. Sin
e GHGs
an be regraded as a fun
tion of produ
ed output at latitude x, we maywrite h (x, t) = f (y (x, t)) where y (x, t) is produ
ed output at (x, t) . Aspointed out by North (1975b), in equilibrium at a given latitude the in-
oming absorbed radiant heat is not mat
hed by the net outgoing radiationand the di�eren
e is made by the meridional divergen
e of heat �ux whi
h ismodelled by the term D ∂

∂x

[

(

1 − x2
) ∂I(x.t)

∂x

]

. This term expli
itly introdu
esthe spatial dimension into the 
limate model. Sin
e the spatial domain hasone dimension the model is 
alled one-dimensional in 
ontrast to the zero-dimensional model where the spatial dimension is not taken into a

ountexpli
itly. The energy balan
e equation (2) in
orporates, for the �rst timeto our knowledge, e
onomi
 variables - output produ
tion - in an energybalan
e model. The importan
e of this is that by modelling i
e line damagesand dis
ontinuous albedo, issues whi
h are not taken into a

ount into stan-dard IAMs, we identify the existen
e of nonlineraities and multiple steadystate for the uni�ed e
onomy-
limate model whi
h 
ould be important inpoli
y design and the identi�
ation of new poli
y ramps. 11Returning to the des
ription of (2), above the i
e line absorption dropsdis
ontinuously be
ause the albedo jumps dis
ontinuously. We will followNorth (1975b), page 2034, equation (3)) and put
α (x, xs) =















b0 = 0.38 x > xs

α0 + α2P2 (x) x < xs

α0 = 0.697
α1 = −0.0779

(3)where P2 (x) =
(

3x2 − 1
)

/2 is the se
ond Legendre polynomial.12 In this set10The solar 
onstant in
ludes all types of solar radiation, not just the visible light. It ismeasured by satellite to be roughly 1.366 kilowatts per square meter (kW/m2).11Note that at this stage output is regarded as an exogenous for
ing parameter in orderto inrodu
e the EBCM in a 
lear way. Output will be endogenized in the uni�ed e
onomy-EBC models that we develop in the next se
tions12A smoothed version of (3) is Equation (38) of North, Cahalan and Coakely (1981),(p. 98). 7



up the i
e line is determined dynami
ally by the 
ondition: (Budyko (1969),North (1975a), North (1975b))
T > −10oC no i
e line present
T < −10oC i
e present (4)The i
e line fun
tion xs (t) solves the equation Is = I (xs (t) , t) . Thusthe latitude of the i
e line 
an move in time in response to 
hanges in humaninput sin
e the i
e line solution depends on h (x, t) . Moving of the i
e linetowards the poles generates the damages we dis
ussed in the introdu
tion.Using 1 and 4 the outgoing radiation at the latitude of the i
e line for ea
hdate t is
I (xs) = Is = 195.7 W/m2 (5)A steady state for the outgoing radiation is a fun
tion of latitude Ī (x)whi
h satis�es the equation

0 = QS (x)α (x, x̄s) −
[

Ī (x) − h̄ (x)
]

+D
∂

∂x

[

(

1 − x2
) ∂Ī (x.t)

∂x

] (6)while the steady state i
e line will satisfy Is = Ī (x̄s) with Is determined by(5).The way to approa
h this problem would be to solve (2) for a givenhuman input fun
tion h (x, t) and to obtain a solution fun
tion I (x, t) . Thenusing (1) the temperature and the i
e line at ea
h date and latitude 
an bedetermined. When the human input 
hanges this solution 
an be used totra
e the impa
t of the human input on outgoing radiation, the surfa
etemperature and the i
e line at ea
h latitude. Sin
e temperature and i
eline 
hanges are asso
iated with damages this type of modeling allows toin
orporate spatial impa
ts and di�erent sour
es of 
limate damages intothe damage fun
tions used in the e
onomi
s of 
limate 
hange.We turn mow to a more detailed analysis of the solution pro
ess. Equa-tion (2) is a PDE. One might think that we are going to have to deal withthe 
ompli
ated mathemati
al issues of the solution or the optimal 
ontrol ofPDEs when we need to dis
uss the so
ial optimization problems over spa
e.But, as we shall see, the 
limate problem redu
es to the optimal 
ontrol ofa small number of �modes� where ea
h �mode� follows a simple ODE. Webelieve this de
omposition is another important and new 
ontribution of ourpaper to the study to 
oupled e
onomi
 and 
limate models. Let us 
on-tinue with the development of the solution pro
edure for equation (2) beforeturning to optimization.North (1975b) approa
hed the solution of (2) by using the approximationmethods (Judd (1998) Chapter 6). Thus the solution is approximated as:
I (x, t) =

∑

n even In (t)Pn (x) (7)8



where In (t) are solutions to appropriately de�ned ODEs and Pn (x) areeven numbered Legendre polynomials. A satisfa
tory approximation of thesolution for (2) 
an be obtained by the so 
alled two mode solution where
n = {0, 2} . We develop here a two mode solution given the human for
ingfun
tion h(x, t). We do it for the Northern Hemisphere only sin
e, followingNorth, we treat the Southern Hemisphere symmetri
ally.13 The two modesolution is de�ned as
Î (x, t) = I0 (t) + I2 (t)P2 (x) (8)
dI0
dt

= −I0 (t) +

∫ 1

0
[QS2 (x)α (x, xs (t)) + h (x, t)] dx, I0 (0) = I00 (9)

I0 (t) = e−t

[

I00 +

∫ t

0
eu [QS0 (xs (u)) + h0 (u)] du

] (10)
dI2
dt

= − (1 + 6D) I2 (t) + 5

∫ 1

0
[QS2 (x)α (x, xs (t)) + h (x, t)]P2 (x) dx,(11)

I2 (0) = I02 (12)
I2 (t) = e−(1+6D)t

[

I02 +

∫ t

0
e(1+6D)u [QS2 (xs (u)) + h2 (u)] du

] (13)
Sn (xs) =

∫ 1

0
S (x)α (x, xs)Pn (x) dx , hn (t) =

∫ 1

0
h (x, t)Pn (x) dx (14)

S (x) = 1 + S2P2 (x) , S2 = −0.482, n = 0, 2 (15)
P0 (x) = 1, P2 (x) =

(

3x2 − 1
)

2
(16)The derivation of the solution is presented in Appendix 1.14 Given thede�nitions of the fun
tional forms the two mode solution is tra
table and
an be 
al
ulated given initial 
onditions I00, I02 whi
h are determined byinitial 
limate. As shown below, the two mode solution 
an be used to obtaintra
table solutions regarding the i
e line and temperature T (x, t) .2.1 The two mode approximation of i
e line fun
tionThis is a fun
tion xs (t) that solves

Is = I0 (t) + I2 (t)P2 (xs (t)) (17)13Of 
ourse the two hemispheres are very di�erent in reality, but we abstra
t from that
omplexity here.14The two mode solution is an approximating solution. We 
an develop a series ofapproximations of in
reasing a

ura
y by solving this problem for expansions using (a�two mode� solution) and using (a �three mode� solution) and so on. North results suggestthat the two mode solution is an adequate approximation.9



To determine the two mode i
e line fun
tion through (17) the dis
onti-nuity in the albedo expressed by (3) and (4) should be taken into a

ount.This 
an be done by applying to the two mode solution for the i
e and thei
e free areas, value mat
hing, smooth pasting and appropriate boundary
onditions at the pole and the equator North (1975a). This fun
tion, whi
hmay not be unique, will depend on the human input h (x, t) .To obtain the two mode approximation steady-state i
e line (9) and (11)are used. The steady state values for the I ′s are given by
Ī0 = QS0 (x̄s) + h̄0 , Ī2 =

5
[

QS2 (x̄s) + h̄2

]

1 + 6D
(18)where it is assumed thatas t→ ∞,

∫ 1

0
h (x, t) dx→ h̄0 and ∫ 1

0
h (x, t)P2 (x) dx→ h̄2. (19)The two mode steady state i
e line is the solution of Is = Ī0 + Ī2P2 (x̄s) ,and
an be obtained by using value mat
hing, smooth pasting and appropriateboundary 
onditions. It is important to note that there may be more thanone solutions to the i
e line.2.2 The two mode approximation of the surfa
e temperatureIn the 
ontext of the two mode approximations, we may use the two modeexpression for I(x, t) to obtain a two mode expression for surfa
e (sea level)temperature T (x, t), i.e T̂ (x, t) = T0 (t)+T2 (t)P2 (x) where T0 (t) and T2 (t)solve the ordinary di�erential equations.

BdT0

dt
= − (A+BT0 (t)) +

∫ 1

0
[QS2 (x)α (x, xs (t)) + h (x, t)] dx (20)

BdT2

dt
= − (1 + 6D)BT2 (t)+ (21)
5

∫ 1

0
[QS2 (x)α (x, xs (t)) + h (x, t)]P2 (x) dx

T0 (0) = T00, T2 (0) = T02 (22)The i
e line fun
tion xs (t) in terms of the temperature solves
T0 (t) + T2 (t)P2 (xs (t)) = Ts, Ts = −10oC (23)and 
an be determined using the value mat
hing 
onditions des
ribed above.From the two mode approximation of the temperature, we obtain the globalmean temperature mT = T0 (t) , whi
h is the integral of T̂ (x, t) over x fromzero to one15, and the varian
e of the temperature,

VT =

∫ 1

0

[

T̂ (x, t) − T0 (t)
]2
dx =

∫ 1

0
(T2 (t)P2 (x))2 dx =

(T2 (t))2

5
(24)15This be
ause ∫ 1

0
P2 (x) dx = 0. 10



Lo
al temperature means at latitudes (x, x + dx) and the mean of tem-perature over the set of latitudes Z = [a, b] are de�ned by
[T0 (t) + T2 (t)P2 (x)] dx,m [a, b] =

∫ b

a
[T0 (t) + T2 (t)P2 (x)] dx (25)while the varian
e of temperature over the set of latitudes Z = [a, b] is

V [a, b] =

∫ b

a
[T0 (t) + T2 (t)P2 (x) −m [a, b; t]]2 dx (26)When the area Z = [a, b] is introdu
ed, It is plausible to assume thatutility in ea
h area [a, b] depends upon both the mean temperature and thevarian
e of temperature in that area. For example we may expe
t in
reasesin temperature varian
e to have negative e�e
ts on output in any area Zwhether it is lo
ated in tropi
al, temperature, or 
older latitudes. Whereasmean temperature in
reases in some areas Z (e.g. Siberia) may in
reaseutility rather than de
rease utility.16 Existing dynami
 integrated models of
limate and e
onomy, (e.g. Nordhaus's well known work (2007), (2010)) 
annot deal with these kinds of spatial elements, su
h as impa
ts of 
hanges intemperature varian
e, generated by 
limate dynami
s over an area Z.The two mode approximate solutions (8)-(16) and (20)-(22) are equiv-alent be
ause they are related by I = A + BT. Sin
e the existing modelsof 
limate and e
onomy, model 
limate in terms of temperature we are go-ing to use this equivalen
e to develop energy balan
e models of e
onomyand 
limate using temperature as the state variable dire
tly asso
iated with
limate. We introdu
e su
h a model in the next se
tion.3 A Simple Integrated Dynami
 E
onomi
 - Cli-mate ModelIn this se
tion we develop a simpli�ed integrated model of e
onomy and
limate, with the 
limate part motivated by the energy balan
e models de-s
ribed above. The 
limate part should in
orporate state variables relatedto the two mode temperature solution and an i
e line equation. The two-mode temperature solution is T̂ (x, t) = T0 (t) + T2 (t)P2 (x) . Wang andStone (1980) argue that an approximation for this solution equation 
anbe a
hieved by repla
ing T2 (t) by an appropriate 
onstant, whi
h we shalldenote by T̄ . Then (dT̂ (x, t) /dt

)

= (dT0 (t) /dt) . Re
all that T0 (t) is global16In a sto
hasti
 generalization of our model, we may introdu
e a sto
hasti
 pro
ess torepresent �weather,� i.e. very high frequen
y �u
tuations relative to the time s
ales we aremodeling here. Here the �lo
al varian
e� of high frequen
y phenomena like �weather� may
hange with 
hanges in lower frequen
y phenomena su
h as mean area Z temperature andarea Z temperature varian
e. We leave this task to future resear
h.11



mean surfa
e (sea level) temperature. Then the evolution of the mean tem-perature is given by (20) or, by setting T0 (t) = T (t)

dT (t)

dt
= −

A

B
− T (t) +

1

B

∫ 1

0
[QS2 (x)α (x, xs (t)) + h (x, t)] dx (27)Thus the Wang-Stone approximation redu
es the state variables from two,in the model (20)-(21), to one whose evolution is des
ribed by (27). Wangand Stone (1980) (equation 3) 
alibrate the model by best �tting the twomode solution to data and use this approximation to get a simple equationfor the i
e line

xs (t) = (aice + biceT (t))1/2 , aice = 0.6035, bice = 0.02078 (28)Damages from 
limate 
hange emerge both form temperature in
reaseand movement of the i
e line towards the north. Let us de�ne these damagesby two fun
tions D1 (T (t)) and D2 (xs (t)) , where 1 denotes damages dueto temperature rise and 2 denotes damages due to i
e line movement. Asimpli�ed integrated e
onomi
 
limate model 
an be developed along thefollowing lines.We asso
iate human input with GHGs emissions and we denote by E (x, t) =
γh (x, t) the emissions asso
iated with human input h (x, t) . These emis-sions a�e
t the temperature dynami
s of our simpli�ed 
limate model. Wefurther assume, as is plausible, that at ea
h latitude emissions disperserapidly, relative to the longer time s
ale of our analysis a
ross latitudes,so that ∫ 1

0 γh (x, t) dx = γh (t) . We 
onsider a simpli�ed e
onomy with ag-gregate 
apital sto
k k. An amount k2 from this 
apital sto
k is divertedto alternative `
lean te
hnologies'. Output in this e
onomy is produ
edby 
apital and emissions h a

ording to a neo
lassi
al produ
tion fun
tion
f (k − k2, h+ φk2) , where φ is an e�
ien
y parameter for 
lean te
hnolo-gies. The 
ost of using a unit of h is ch (h) ,with ch (0) = 0, c

′

h > 0, c
′′

h > 0.The use of emissions 
an be redu
ed by employing 
lean te
hnologies at ane�e
tive rate φk2. Denoting 
onsumption by c, net 
apital formation is oursimpli�ed e
onomy is des
ribed by
dk

dt
= f (k − k2, h+ φk2) − c− ch (h) − δk (29)where δ is the depre
iation rate on the 
apital sto
k. Assuming a linearutility fun
tion or U (c) = c the problem of a so
ial planner that seeks tomaximize dis
ounted live time 
onsumption subje
t to (27), (28), and (29)
an be des
ribed, in the 
ontext of a integrated e
onomi
/
limate model, in

12



terms of the following most rapid approa
h path (MRAP) problem.17
V (T (0)) = max

∫ ∞

0
e−ρt [f (k − k2, h+ φk2) − ch(h) − (δ + ρ)k (30a)

−D1 (T (t)) −D2 (xs (t))] dtsubje
t to (28) and (30b)
dT (t)

dt
= −

A

B
− T (t) +

γ

B
h (t) +

1

B
ψ (T (t)) , (30
)

ψ (T (t)) =

∫ 1

0
[QS2 (x)α (x, xs (t))] dx , T (0) = T0 (30d)where V (T (0)) is the 
urrent value state valuation fun
tion, ρ is the sub-je
tive rate of dis
ount on future utility,and the nonlinear fun
tion ψ (T (t))is an in
reasing fun
tion of T (North (1975a)). Problem (30a)-(30d) afterthe su

essive approximations has been redu
ed regarding the 
limate partto a `zero-dimensional' model. We still believe that this exer
ise is of valuebe
ause it outlines a pathway to extensions to one dimensional models and iseven suggestive via the Legendre basis method of how one might potentiallyextend the work to two dimensional models on the sphere.18 Problem (30a)-(30d) is in prin
iple tra
table to one dimensional phase diagram methodswith the 
ostate variable on the verti
al axis and the state variable on thehorizontal axis. However, we feel that insights are gained more rapidly by an-alyzing the following qualitatively similar problem that is strongly motivatedby the problem (30a)-(30d).

V (T (0)) = max

∫ ∞

0
e−ρt [f (k − k2, h+ φk2) − ch(h) − (δ + ρ)k (31a)

−D1 (T ) −D2 (T )] dts.t. dT
dt

= aT − bTT + cTh , (aT , bT , cT ) > (0, 0, 0) (31b)where D′

1 (T ) = a1T, implying in
reasing marginal damages due to tem-perature in
rease, while D′

2 (T ) is a fun
tion in
reasing at low T rea
hinga maximum and the de
reasing gradually to zero. The shape of D2 (T ) isintended to 
apture initially in
reasing marginal damages from i
e line rise17The assumption of linear utility allows one to write a 
apital a

umulation problemas a MRAP problem Problem (30a) is an approximation of the MRAP problem for verylarge B and −B ≤ dk

dt
≤ B. In problem (30a) 
apital,k, 
an thus be eliminated as a statevariable.18Bro
k and Judd (2010) are developing a two dimensional spheri
al 
oupled 
li-mate/e
onomi
 dynami
s model by using a basis of spheri
al harmoni
s as in Wu andNorth (2007). This approa
h, as well as the Legendre basis approa
h we are using in thispaper for one dimensional models �ts in ni
ely with the general approa
h to approximationmethods in Judd's book (Judd (1998), Chapter 6)13



(indu
ed by temperature rise) whi
h rea
h a maximum, as temperature in-
reases, and eventually vanish on
e the polar i
e 
aps are gone. De�ne
π (h) = max

k≥0,k2≥0
{f (k − k2, h+ φk2) − (η + ρ) k} (32)Sin
e we assume that f(·, ·) is 
on
ave in
reasing, π (h) is an in
reasing 
on-
ave fun
tion of h.19 We may now write down the 
urrent value Hamiltonianand the �rst order ne
essary 
onditions for an optimum,

H (h, T, λT ) = π (h) − ch (h) −D1 (T ) −D2 (T ) + λT (aT − bTT + cTh)(33)
π′ (h) = c′h − λT cT ⇒ h = h∗ (λT ) , h∗

′

(λT ) > 0 (34)where it is understood in (34) that the inequality 
onditions of boundarysolutions are in
luded, and
dT

dt
= aT − bTT + cTh

∗ (λT ) , T (0) = T0 (35)
dλT

dt
= (ρ+ bT )λT + a1T +D′

2 (T ) (36)We know that sin
e λT (t) = ∂V (T (t))
∂T (t) := V ′ (T (t)) < 0 the 
ostate variable
an be interpreted as the shadow 
ost of temperature. We also know thatif a de
entralized representative �rm pays an emission tax then the path ofthe optimal emission tax is −λT (t) . We 
an study that properties of steadystates of problem (30a)-(30d) by analyzing the phase portrait implied by(35)-(36). The iso
line dT/dt = 0 is easy to draw for (35). Along thisiso
line we have dλT

dT = bT

cT h∗′
> 0, by using (34), thus along this iso
line λTis in
reasing in T. There is a value λTc su
h that if λT (t) < λTc then h∗ = 0and aT /bT = T . If there are no i
e line damages, the dλT /dt iso
line is justa linear de
reasing fun
tion of T that is zero at T = 0, or λT = − a1

(ρ+bT )T,whi
h implies that λT < 0 for all T > 0. Now add the i
e line damage tothis fun
tion. The iso
line is de�ned as
λT | dλT

dt
=0

= −
a1T +D′

2 (T )

(ρ+ bT )
.
dλT

dT
= −

a1 +D
′′

2 (T )

(ρ+ bT )
(37)With a gamma fun
tion representation of D2 (T ) , D

′′

2 (T ) is positive and de-
reasing, it be
omes negative, rea
hes a minimum and vanishes after be
om-ing positive again. This indu
es a nonlinearity to the dλT /dt = 0 iso
line.In general it is expe
ted that this iso
line will have a 
urved N shape, whi
hmeans that with an in
reasing dT/dt = 0 iso
line if a steady state (T̄ , λ̄T

)19Note that π′ (0) < ∞ if φ > 0 for the alternative �
lean� te
hnology.14



exists, there will be either one or three steady states. To study the stabilityproperties of these steady states we form the Ja
obian matrix of (35)-(36)
J
(

T̄ , λ̄T

)

=

(

−bT cTh
∗′
(

λ̄T

)

a1 +D
′′

2

(

T̄
)

bT + ρ

) (38)If at a steady state α1+D
′′

2

(

T̄
)

> 0 so that the dλT /dt = 0 iso
line is de-
reasing then det J
(

T̄ , λ̄T

)

< 0 and the steady state is a lo
al saddle point. If
α1+D

′′

2

(

T̄
)

< 0 so that the dλT /dt = 0 iso
line is in
reasing the steady stateis an unstable spiral.20 Thus when a unique steady state exits it will be asaddle point. The 
ase of three 
andidate optimal steady states T̄1 < T̄2 < T̄3is of parti
ular interest. In this 
ase given the shapes of the two iso
lines thesmallest one and the largest one are saddles and the middle one is an unsta-ble spiral. Thus we have a problem mu
h like the lake problem analyzed byBro
k and Starrett (2003). However, λT (t) = V ′ (T (t)) < 0 for our problemthe phase diagram is position at the southeast quadrant Following an argu-ment mu
h like that in Bro
k and Starrett (2003) it 
an be shown (undermodest regularity 
onditions so that the Hamiltonian is 
on
avo-
onvex in
T ) that there are two value fun
tions, 
all them, Vmitigate (T ) and Vadapt (T ),and a �Skiba� point Ts ∈

(

T̄1, T̄3

)su
h that Vmitigate (Ts) = Vadapt (Ts) and for
T0 < Ts, it is optimal to follow the 
ostate/state equations asso
iated with
Vmitigate (T ) and 
onverge to T̄1, while for T0 > Ts it is optimal to followthe 
ostate/state equations asso
iated with Vadapt (T ) and 
onverge to T̄3.In Figure 1 we present this situation for an appropriate 
hoi
e of fun
tionalforms and parameters.21 Besides the solution path the �gure also plots theiso
line's both with and without i
e line damages. Without i
e line dam-ages we have the 
ase when the λ̇T -iso
line is a linear de
reasing fun
tionof T implying that we get a unique global saddle point at the 
rossing ofthe λ̇T = 0,Ṫ = 0 iso
lines denoted by T̄n. For the 
ase with i
e line dam-ages on the other hand, we get the 
urved N-shaped λ̇T , iso
line giving us a�Skiba� point Ts lying just between the unstable spiral T̄2 and the lo
al sad-dle point T̄3. Hen
e, for low initial T0 < T̄1, it will be optimal to levy a lowinitial 
arbon tax even though there is a polar i
e 
ap threat (but it is notdis
ontinuous as in Oppenheimer and his 
oauthors' work) and then grad-ually in
reasing the 
arbon tax along a gradualist poli
y ramp. However,if
T0 ∈

(

T̄1, Ts

) it is optimal to tax 
arbon higher at T0 and let the tax gradu-ally fall. But if initial temperature is large enough the i
e 
aps are essentiallyalready trashed and the optimal thing to do is to tax 
arbon initially quitemodestly but along an in
reasing s
hedule through time to deal with the20The eigenvalues of J are given by 1

2

(

ρ ±
√

∆
), where ∆ = ρ2 +

4
[(

a1 + D
′′

2

(

T̄
)

)

cT h∗′ + bT (bT + ρ)
]

. When a1 + D
′′

2

(

T̄
)

> 0 then ∆ < 0 and we havetwo 
omplex eigenvalues with postive real parts whi
h implies an unstable spiral.21The assumed fun
tional forms, parameters and 
al
ulations used in �gure 1 are pro-vided in appendix A. 15
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T̄2T̄1 T̄3Ts T̄nFigure 1: Phase diagram for the system (35)-(36).rising marginal damages due to temperature rise. Figure 1 thus shows howthe qualitative pi
ture 
hanges 
ompletely when an appropriate shape for i
eline damage fun
tion is 
onsidered. In parti
ular, the area T ∈ (T̄1, Ts) is ofinterest sin
e, if i
e line damages go una

ounted for, the optimal strategywill be levy a low 
arbon tax whi
h eventually will raise temperature to T̄n,while in a model with i
e line damages in
luded the exa
t opposite will betrue implying a de
rease in temperature to T̄1.It is important to note that this stationary model is not ri
h enoughto 
apture the eventual rather sharp in
rease along the �gradualist� poli
yramp of Nordhaus (2007, 2010) be
ause in Nordhaus's 
ase the Business asUsual (BAU) emissions path would be growing be
ause of e
onomi
 growth.Thus the damages from temperature rise alone, growing quadrati
ally as thequantity of emissions grows, would lead to the gradualist path of 
arbontaxes �taking� o� in the future. However, this simple stationary model doesexpose the �new� behavior of a higher initial 
arbon tax for T0 ∈
(

T̄1, Ts

).Our runs of the DICE model in se
tion 5 below exhibit a sharply higher
arbon tax at the beginning due to the �extra� i
e line damages added toNordhaus's damages.2222Note that Nordhaus does in
lude damages from i
e melt, but the 
limate model abovewith moving i
e line adds another 
omponent of i
e melt that has a de
lining marginaldamage fun
tion.
16



4 Spatial Energy Balan
e Integrated AssessmentModelsIn this se
tion we in
orporate the framework of the energy balan
e modelsdeveloped above into a framework similar to well established integrated as-sessment models (IAMs) su
h as the DICE/RICE models proposed by Nord-haus. We use notation 
lose to that of Nordhaus (2010) for the DICE/RICEpart of the model. Consider the 
ontinuous time spatial analog of Nordhaus'sequations (2007 Appendix 1 or 2010, A.1-A.20) where we have made some
hanges to be 
onsistent with our notation and have suppressed (x, t) argu-ments to ease typing, unless (x, t) is needed for 
larity,
W =

∫ ∞

0
e−ρt

∫ 1

0
φ (x)U (c, L) dxdt , U (c, L) = Lu (c) (39)where L is labour input at at latitude x and time t,, u (c) is utility and

c = C/L where C is aggregate 
onsumption at (x, t), and φ (x) is a Negishiweight fun
tion.23 Furthermore,
Yn = C +

dK

dt
+ δK (40)

Yn = Ω (1 − Λ)Y, Y = AF (K,L) (41)where, Yn : output of goods and servi
es at latitude x and time t, net ofabatement and damages, Ω (T (x, t)) : damage fun
tion (
limate damages asfra
tion of output) as a fun
tion of temperature at (x, t), Λ = ψµθ2 : abate-ment 
ost fun
tion (abatement 
osts as fra
tion of output),A : total fa
torprodu
tivity, and F (K,L) is a standard neo
lassi
al produ
tion fun
tion,with K the 
apital sto
k at (x, t) and δ is the usual depre
iation rate of
apital. We assume, as does Nordhaus (2010), full employment of the labor
L(x, t) in the produ
tion fun
tion F (K(x, t), L(x, t)).Aggregate emissions at time t are de�ned as:

E (t) =

∫ 1

0
σ (1 − µ)Y (x, t) dx (42)where σ : ratio of un
ontrolled industrial emissions to output (metri
 tons
arbon per output at a base year pri
es), µ : emissions-
ontrol rate (fra
tionof un
ontrolled emissions). Climate dynami
s in the 
ontext of the ECBM23The maximization of obje
tive (39) with the �Negishi� φ (x)weighting fun
tion is a wayof 
omputing a Pareto Optimum 
ompetitive equilibrium allo
ation a
ross latitudes as inNordhaus's dis
rete time non-spatial formalization in Nordhaus (2010). For a presentationof the use of the Negishi weights in IAMs see Stanton (2010).
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developed in the previous se
tions are de�ned as:
∂T (x, t)

∂t
=

1

B
[QS (x)α (x, xs) + E (t) −A−BT (x, t) + (43)

D
∂

∂x

[

(

1 − x2
)

B
∂T (x, t)

∂x

]]

Ts = T (xs (t) , t) (44)Noti
e that we have repla
ed Nordhaus's 
limate equations (2010, equa-tions A.14-A.20) with the spatial 
limate dynami
s, (43), (44). Maximizationof obje
tive (39) subje
t to the 
onstraints above is a very 
ompli
ated anddi�
ult optimal 
ontrol problem of the PDE (43) on an in�nite dimensionalspa
e x ∈ [0, 1]. We redu
e this problem to a mu
h simpler approximateproblem of the optimal 
ontrol of a �nite number of �modes� using the twomode approa
h des
ribed earlier.For the two mode approximation equations T (x, t) = T0 (t)+T2 (t)P2 (x)(43), (44). redu
e to the pair of ODEs.
dT0

dt
=

1

B

[

− (A+BT0) +

∫ 1

0
QS2 (x)α (x, xs (t)) dx+ E

]

, T0 (0) = T00(45)
dT2

dt
=

1

B
[− (1 + 6D)BT2+ (46)

5

∫ 1

0
QS2 (x)α (x, xs (t))P2 (x) dx

]

, T2 (0) = T02

T0 (t) + T2 (t)P2 (xs (t)) = Ts, Ts = −10oC (47)Before 
ontinuing noti
e that North's two mode approximation has re-du
ed a problem with a 
ontinuum of state variables indexed by x ∈ [0, 1]to a problem where the 
limate part has only two state variables. We 
anmake yet a further simpli�
ation by assuming the utility fun
tion is linear,i.e. u (c) = c . This will allow us to write (39) as the MRAP problem:
W =

∫ ∞

0
e−ρt

∫ 1

0
φCdxdt =

∫ ∞

0
e−ρt

∫ 1

0
φ [AFΩ (1 − Λ) − (ρ+ δ)K] dxdt(48)Note that for the two mode approximation, the damage fun
tion shouldbe de�ned as:

Ω (T (x, t)) = Ω (T0 (t) + T2 (t)P2 (x)) (49)To ease on the notation we introdu
e the inner produ
t notation 〈f, g〉 =
∫ 1
0 f (x) g (x) dx. We may now write down the 
urrent value Hamiltonian forthe optimal 
ontrol problem (48) and show how we have drasti
ally simpli�ed18



the problem by using a two mode approximation,24
H =

∫ 1

0
φ

[

AFΩ
(

1 − ψµθ2

)

− (ρ+ δ)K +
λ0

B
σ (1 − µ)AF

]

dx (50)
λ0

B
[〈QSα, 1〉 −A−BT0] +

λ2

B
[5 〈QSα,P2〉 − (1 + 6D)BT2]For the simpli�ed problem (48) the 
apital sto
k and the emissions 
on-trol rate K∗ (x, t) , µ∗ (x, t) are 
hosen to maximize H for ea
h (x, t), whi
his a relatively simple problem. However there is one 
ompli
ation to be ad-dressed. The absorption fun
tion α (x, xs (t)) depends upon the i
e line xs (t)where the i
e line is given by a solution of (47), i.e.

xs (t) = P−1
+

(

Ts − T0 (t)

T2 (t)

) (51)Where the subs
ript �+� denotes the largest inverse fun
tion of the quadrati
fun
tion P2 (x) := (1/2)
(

3x2 − 1
). Noti
e that the inverse fun
tion is uniqueand is the largest one on the set of latitudes [0, 1]. Equation (51) indu
es anonlinear dependen
e of equations (45) and (46) on through the absorptionfun
tion , but no new state variables are introdu
ed by this dependen
e. Anadditional dependen
e indu
ed by equations (45) and (46) as well as equation((51) is on the damage fun
tion whi
h we parameterize as,

Ω = Ω
(

T0 (t) , T 2
2 (t)P 2

2 (x) ;xs (t) , x
) (52)The �rst term in (52) represents damages to output at latitude x asa fun
tion of average planetary temperature as in Nordhaus (2007,2010),the se
ond term is an attempt to 
apture extra damages due to 
limate�varian
e�, Note that the 
omponent P 2

2 (x) is larger at x = 0 and x = 1than it is at the �temperate� latitude x = (1/3)1/2 where P 2
2 (x) is zero. Thisis an admittedly 
rude attempt to 
apture the 
omponent of damages dueto �wetter pla
es getting wetter� and �dryer pla
es getting dryer� as well asdamages to ar
ti
 latitudes 
ompared to temperate latitudes. But some ofthis dependen
e 
an be 
aptured also in the �x� term in the parameterization(52). Finally the impa
t on damages at latitude x due to shifts in the i
eline is 
aptured by in
lusion of the i
e line in (52). This is a fairly �exibleparameterization of spatial e�e
ts (i.e. latitude spe
i�
 e�e
ts) that are not
aptured in the re
eived non-spatial formulations of integrated assessmentmodels.24The important thing to note about this Hamiltonian 
ompared to the Hamiltonianof the original problem (39) is this. The original problem would generate a Hamiltonianwith a 
ontinuum of 
ostate variables one for ea
h x ∈ [0, 1]. The two-mode approximationapproa
h developed 
ould be quite easily extended to an n-mode approximation approa
h.Sin
e however North argues that a two mode approximation is quite good, we 
ontinuewith a two mode approximation here. 19



4.1 Optimal mitigation and lo
ation spe
i�
 poli
y ramp ina spatial 
limate modelLet us �rst illustrate optimal mitigation using our two mode simpli�
ationof our original �in�nite mode� problem with linear utility by 
onsidering aversion of the problem where the impa
t of poli
y {µ (x, t)} on the lo
ationof the i
e line xs (t) is ignored. I.e. there is no i
e line dependen
e of anyfun
tions of the problem in
luding the absorption fun
tion α (x, xs (t)).Inthis simpli�ed 
ase the albedo fun
tion depends only upon x and thus theterms 〈QSα, 1〉 , 〈QSα,P2〉 do not depend upon T0 (t) , T2 (t) in (45) and (46).Hen
e the two 
ostate ODEs are also simple,
dλ0

dt
= (ρ+ 1)λ0 −

∂H

∂T0
= (ρ+ 1)λ0 −

∫ 1

0
φAF (1 − Λ)

∂Ω

∂T0
dx (53)

dλ2

dt
= (ρ+ 1 + 6D)λ2 −

∂H

∂T2
= (54)

(ρ+ 1 + 6D)λ2 −

∫ 1

0
φAF (1 − Λ)

∂Ω

∂T2
dxWang and Stone (1980) argue that one 
an even get a fairly good approx-imation of T2 by exploiting how fast mode 2 
onverges relative to mode zeroin equation (46) as 
ompared to (45). Hen
e we approximate by assumingthat T2 has already 
onverged to:

T2 =
5 〈QSα,P2〉

(1 + 6D)B
(55)for ea
h T (t).25 The Hamiltonian for the 
ase where and the absorptionfun
tion is 
onstant is26

H =

∫ 1

0

[

φ (AFΩ (1 − ψµ) − (ρ+ δ)K) +
λ0

B
σ (1 − µ)AF

]

dx (56)
+
λ0

B
[Qα−A−BT0] (57)In this 
ase we obtain the following swit
hing de
ision rule for µ∗ (x, t)

µ∗ (x, t)







= 0
∈ [0, 1]

= 1







for − λ0 (t)







<
=
>







φ (x)ψB

σ (x)
Ω (58)

Ω = Ω
(

T0 (t) , (T2P2 (x))2 , x
) (59)

λ0 (t) =

∫ ∞

s=t
e−(ρ+1)(s−t)

[
∫ 1

0
AFΩ (1 − ψµ∗)

∂Ω

∂T0
dx

]

ds (60)25Note that in the 
ase where the absorption fun
tion does not depend upon xs (t) thatthe RHS of (55) is 
onstant.26Note that with a 
onstant absorbtion fun
tion, 〈QSα, 1〉 = 〈Q (1 + S2P2 (x)) α, 1〉 =
〈Qα + QS2αP2 (x) , 1〉 = 〈Qα, 1〉 = Qα, sin
e 〈QS2αP2 (x) , 1〉 = 0.20



Suppose some type of institution wanted to implement this so
ial opti-mum. One way to do it would be to impose a tax τ (λ) = −λ0(t)
B on emissionswhen individual agents solve the stati
 problems

max
{µ∈[0,1],K≥0}

{AFΩ (1 − ψµ) − (ρ+ δ)K − τ (λ) σ (1 − µ)AF} (61)We see right away that the �rst order ne
essary 
onditions for the prob-lem (61) are the same with those resulting from the Hamiltonian fun
tion(56). Hen
e if F (K,L) is 
on
ave in
reasing in (K,L) whi
h we assume asusual in e
onomi
s, then setting τ (λ) = −λ0(t)
B implements the so
ial op-timum. Note that the so
ially optimal emissions tax is uniform a
ross alllo
ations as one would expe
t from Nordhaus (2007, 2010).The reader might ask at this point: What substantive di�eren
e doesthe spatial 
limate model 
oupled to the e
onomi
 model add that is notalready 
aptured by non-spatial 
limate models? There are several importantdi�eren
es regarding poli
y impli
ations.The emission redu
tion poli
y ramp µ∗ (x, t) , is lo
ation spe
i�
 anddi
tates µ∗ (x, t) = 1 for all (x, t) where the relative �Negishi� weight φ (x)on welfare at that lo
ation is small (re
all that ∫ 1

0 φ (x) dx = 1 by normal-ization). For example, if a Rawlsian so
ial obje
tive is imposed, as men-tioned in the introdu
tion, where the so
ial welfare of the worst o� lati-tude, 
all it x0, is maximized, then φ (x) = 0 for all latitudes di�erent then
x0. Hen
e all latitudes other than x0 would be immediately ordered to re-du
e their emissions to zero. Consider a more plausible s
enario. Assumethat Ω = Ω

(

T0 (t) , (T2P2 (x))2 , x
)

= Ω
(

T0 (t) , (T2P2 (x))2
) is de
reasingin both arguments. This 
rudely 
aptures the idea that damages in
reaseat ea
h latitude as average planetary temperature, T0 (t) in
reases and as ameasure of lo
al 
limate �varian
e� (T2P2 (x))2 in
reases. Let R denote a setof �at risk latitudes� with low values of Ω

(

T0 (t) , (T2P2 (x))2
), i.e. with highvalues of the arguments. The set R is a 
rude attempt to 
apture latitudesthat would be relatively most damaged by 
limate 
hange. A more plausibletype of �Rawlsian� obje
tive would be to solve the so
ial problem above butwith φ (x) > 0, x ∈ R, φ (x) = 0, x /∈ R . We see right away that this so
ialproblem would require all x's not in R to redu
e all emissions immediately.In general we have,

µ∗ (x, t) = 1, for − λ0 (t) >
φ (x)ψB

σ (x)
Ω (62)and vi
e versa. This makes good e
onomi
 sense. The marginal so
ial burdenon the planet as a whole of a unit of emissions at date t, no matter fromwhi
h x it emanates is, −λ0 (t). Lo
ations x where the �Negishi� weighton the lo
ation is small, where emissions per unit of output are relativelylarge (relatively large σ (x)), and that are already relatively heavily damaged21



(Ω(T0 (t) , (T2P2 (x))2 , x
) is high ) are ordered to stop emitting. Thus ourmodeling allows plausible spe
i�
ations of the e
onomi
 justi
e argumentstemming from geography to shape poli
y rules.Furthermore, we 
an use this framework to extend our results to thepresen
e of an i
e line with an absorption fun
tion that 
hanges at the i
eline. This is a more realisti
 model whi
h introdu
es i
e line damages andwhi
h we develop in the 
ontext of a DICE/RICE-type integrated assessmentmodel4.2 Optimal mitigation in a spatial IAM-type 
limate modelWe introdu
e now as the absorption fun
tion the version proposed in North(North (1975a)) where

α (x, xs) = 1 − α (x) =

{

α1 = 0.38 x > xs

α0 = 0.68 x < xs
(63)where α (x) is the albedo. With this absorption fun
tion the dynami
s T0 (t)in (45) and the T2 approximation in (55) be
ome respe
tively

dT0

dt
=

1

B

[

− (A+BT0) +Q (α0 − α1)

∫ x=xs(t)

x=0
(1 + S2P2 (x)) dx+ E +Qα1

](64)
T2 =

1

(1 + 6D)B

[

5Q (α0 − α1)

∫ x=xs(t)

x=0
(1 + S2P2 (x))P2 (x) dx+Qα1S2

](65)where the equation for the i
e line is, using (51):
xs (t) =

[

2

3

Ts − T0 (t)

T2
+

1

3

]
1

2 (66)The obje
tive (39) and the 
onstraints (63)-(66) determine optimal mit-igation over time and latitude. The dis
ontinuous absorption fun
tion 
an
reate a strong nonlinearity where a small 
hange in T0 
an 
ause a large
hange in damages at some latitudes. This nonlinearity makes however dif-�
ult to pro
eed with analyti
al solutions. To obtain a qualitative idea ofimpa
t of the nonlinearity due to the absorption fun
tion and the i
e linewe use the 
limate parametrization used by North (1975a) (α0 = 0.68, α1 =
0.38, A = 201.4, B = 1.45, S2 = −0.483, Ts = −10, Q = 334.4). The heattransport 
oe�
ient D is found to be approximately 0.2214 by 
alibratingthe i
e line fun
tion to the 
urrent i
e line estimate (xs = 0.95).2727The 
alibration pro
edure is explained in detail by North (1975b) p.2035-2037.22



The system (64)-(66) is highly non-linear and 
an be simpli�ed by deriv-ing a polynomial approximation of xs as a fun
tion of T0(t). We pro
eed inthe following way. If we substitute xs (t) from (66) into (65), then T2 resultsas a �xed point of (65). We solve numeri
ally the �xed point problem (65)for values of T0 ∈
[

−T̄0, T̄0

],obtaining the solution T̂2(T0). Substituting thisba
k into equation (66) gives us the x̂s(T̂2(T0), T0) whi
h is then used to �tusing least squares, a quadrati
 
urve on (T0, x̂s). Thus x̂s is approximatedby a 
onvex 
urve x̂s = ζ0 + ζ1T0 + ζ2T
2
0 = ζ (T0) , (ζ0, ζ1, ζ2) > 0,.28 Makinguse of this approximation the system (64)-(66) 
an thus be written as:

dT0

dt
=

1

B
[−(A+BT0) +Q(α0 − α1)θ(T0) + E +Qα1] (68)where θ(T0) :=

[

x̂s +
S2

2
(x̂3

s − x̂s)

] with x̂s := ζ0 + ζ1T0 + ζ2T
2
0The optimization problem 
an also be further be simpli�ed, without loosingthe major points of our arguments, by assuming 
onstantlabor for
e normalized at L = 1, no te
hni
al 
hange, and a Cobb-Douglasprodu
tion fun
tion Y = Kβ, 0 < β < 1. The Hamiltonian 
an thus bewritten as:

H =

∫ 1

0

[

φKβΩ(T0)
(

1 − ψµ2
)

− (ρ+ δ)K +
λ0

B
σ (1 − µ)Kβ

]

dx (69)
+
λ0

B
[−A−BT0 +Q(α0 − α1)θ(T0) +Qα1]Note that the fun
tions under the integral do not expli
itly depend on xex
ept φ (x) and possibly ψ (x) if abatement 
osts are site spe
i�
. Assumethat ψ (x) = ψ. Then sin
e ∫ 1

0 φ (x) dx = 1, the optimal µ and K will bede�ned as:
µ∗ = −

λ0σ

2BψΩ(T0)
(70)

K∗ =

(

ρ+ δ

β

)
1

β−1
[

Ω(T0)
(

1 − ψµ∗2
)

−
λ0

B
σ (1 − µ∗)

]
−1

β−1 (71)and the 
anoni
al system is:
dT0

dt
=
[

−A−BT0 +Q(α0 − α1)θ(T0) + σ(1 − µ∗)K∗β
] (72)

dλ0

dt
=

(

ρ+ 1 −
Q

B
(α0 − α1)θ

′(T0)

)

λ0 −
[

K∗βΩ′(T0)(1 − ψµ∗2)
] (73)28The estimated quadrati
 fun
tion was

x̂s = 0.7126 + 0.0098T0 + 0.0003T
2
0 , R

2 = 0.99 (67)All 
oe�
ients are statisti
ally signi�
ant at 1% level.23



To pro
eed further we need a more detailed spe
i�
ation for the damagefun
tion, whi
h as explained above should 
ontain a 'temperature 
ompo-nent' denoted by D1 (T0) and an 'i
e line 
omponent', denoted by D2 (T0) .We spe
ify the damage fun
tion in the following way.Lost output from temperature indu
ed damages is: Y − Y
1+D1(T0)

=
Y D1(T0)
1+D1(T0) := Y d1 (T0)Lost output from i
e line moving towards the poles written as a fun
tionof T0 is: Y − Y

1+D2(T0)
= Y D2(T0)

1+D2(T0) := Y d2 (T0)The sum of lost output from both sour
es is: LostY = Y d1 (T0) +
Y d2 (T0) .Thus net output available for 
onsumption and mitigation is: Y−LostY =
(1 − d1 (T0) − d2 (T0))Y.If we de�ne Ωi (T0) = 1

1+Di(T0) , i = 1, 2, then the term (1 − d1 (T0) − d2 (T0))
an be written as the damage fun
tion Ω of the system (70)-(73) in the form
Ω(T0) = Ω1 (T0) + Ω2 (T0) − 1 (74)As the global warming problem 
on
erns damages resulting from tempera-ture in
reases, rather than de
reases, we restri
t the state spa
e to in
ludeonly temperatures T0 > 15◦C i.e. in the vi
inity of the present averageglobal temperature level.29 In the spatial model used in this se
tion thistemperature level is found by setting E = 0 and solving (68), whi
h gives us

T0 ≈ 15.27. Hen
e, 15◦C 
an thus be thought of as a rough ballpark esti-mate of the preindustrial global temperature average. Damages are assumedto start at 15◦C and we will thus write our normalized damage fun
tion as
Ω(T0 − 15). Further we will use the same fun
tional forms for the damagefun
tions as used in se
tion 3.30The energy balan
e spatial 
limate model that we presented in this se
-tion as the result of the 
on
epts developed in the earlier part of the paper,has many similarities to the traditional IAMs but also two potentially im-portant di�eren
es. The �rst is that the dis
ontinuous absorption fun
tionand the i
e line introdu
e a nonlinear term in the temperature dynami
s,the se
ond is that i
e line damages are in
luded in addition to temperaturedamages. The question of whether these di�eren
es imply signi�
ant devia-tions of the models' predi
tions, 
annot be answered analyti
ally due to thehigh 
omplexity of the models. So we are resorting to simulations.Figure 2 shows the results for the spatial 
limate model we have presentin this se
tion. As in se
tion 3 this model also gives us 3 
andidate optimal29During the development of many energy balan
e models in the 1960's and 70's themain 
on
ern was usually not that of global warming but rather that of global 
oolingthat 
ould result due to a slight de
rease in the solar 
onstant.30The parameters estimates are taken to be ρ = 0.02, a1 = 0.09, a2 = 0.5, Ȳ = 1, ϕ =
0.1, σ = 0.001 and the temperature and i
e line 
omponents are D1(T0) = a1T

2
0 and

D2(T0) = a2e−2T0T 2
0 . 24
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T̄03T̄02T̄01 T̄n TsFigure 2: Phase diagram for the system (72)-(73).steady states T̄01 < T̄02 < T̄03 where the largest and the smallest ones aresaddles while the middle one is an unstable spiral.31 Between the unstablespiral T̄2 and the saddle T̄3 we have a Skiba point T̄s similar to that ofse
tion 3.32 Hen
e, for low initial temperatures T00 < T̄1 a low but graduallyin
reasing 
arbon tax is optimal, while for T00 < Ts we get the 
ase where itis optimal to levy a high 
arbon tax at T00 and then gradually de
rease it.Further, the �gure also depi
ts the 
ase when i
e line damages are omitted
T̄n. As opposed to se
tion 3 both of the iso
line's are now a�e
ted and inorder to to keep the �gure from getting too messy we have 
hosen only to plotthe single equilibrium at the 
rossing of these iso
line's, whi
h is denoted bythe bla
k dot at T̄n of �gure 2. The qualitative behavior is however the sameas in se
tion 3, i.e. the no i
eline damage equilibrium is a saddle having apositive slope for the Ṫ -iso
line and a negative slope for the λ̇-iso
line.31The 
orresponding eigenvalues are approximated numeri
ally as e01 =
[−0.3974, 0.4174], e02 = [0.0100 ± 0.2045i] and e03 = [−0.1946, 0.2146].32Greiner, Grüne and Semmler (2009) �nd multiple equilibria in a zero-dimensionalEBM, where albedo is modeled by a 
ontinuous S-shaped fun
tion of temperature. Thederived multiple-equilibria and Skiba planes, however, only apply for �xed levels of abate-ment i.e. there is just a single 
ontrol variable (
onsumption). If however, the so
ialplanner 
an 
ontrol both 
onsumption and abatement then there exists only a singlestable saddle. Our approa
h apart from expli
itly addressing the more appropriate one-dimensional model also di�er in the sense that we obtain multiple equilibria and Skibapoints when 
ontrolling both 
onsumption and abatement.25



5 DICE model results with i
e line damagesBoth the relative simple model of se
tion 3 and the more 
omplex model ofse
tion 4 strongly suggest that the impli
ations of expli
itly modeling i
e linedamages is to 
all for strong mitigation now. In order to further demonstratethat this result is robust to the 
hoi
e of model we now turn to the DICEmodel. The purpose of this exer
ise is to show how the introdu
tion of i
e linedamages into the damage fun
tion, along the lines suggested by the EBCMswill a�e
t the optimal emission poli
y implied by DICE the most well know ofthe IAMs. The DICE model assumes that all damages to the e
onomy evolvea

ording to the quadrati
 equation (A.5) of Nordhaus (2007). This equationhas been 
alibrated to a 2.5 degree warming based upon an aggregate ofimpa
t studies from a variety of di�erent sour
es.33 In order to separateout the i
e line 
omponent from the total amount of damages we follow thepro
edure shown in se
tion 4.2. We thus simply repla
e (A.5) with equation(74) from this se
tion. Hen
e, we have two separate damage 
omponents
D1(T ) andD2(T ) that 
an be 
alibrated independently a

ording to di�erentimpa
t assessments. Nordhaus (2007) �nds the aggregate impa
t of a 2.5degree warming to be roughly 2% of GDP. Sin
e, it is not possible to ba
kout exa
tly how mu
h of this 2% fall in GDP from a 2.5 degree warmingis due to i
e line spe
i�
 damages, we simply make a 
rude assumptionthat approximately 50% of these damages are attributable to the i
e line
omponent D2(T ).34 Next, we make the following assumptions regardingthe shapes of the temperature and i
e line spe
i�
 
omponents, i.e. weset D1(T ) = a1T

5 and D2(T ) = a2e
−2TT 2. In a manner 
onsistent withNordhaus (2007) we then pro
eed by 
alibrating the parameters a1 and a2so that D1(2.5) = 0.01 and D2(2.5) = 0.01. In this way our new damagefun
tion produ
es an equivalent amount of damage at a 2.5 degree warmingas in the original model but will di�er for all other temperature levels. Thisnew damage fun
tion thus has the property that the temperature 
omponent,having a larger exponent than the original quadrati
 fun
tion, punishes GDPto mu
h larger extent when temperature levels start to rise above 3 degrees.When temperature levels on the other hand are lower, the damages from thei
e line are the ones that dominate.35 Figure 3 plots the optimal emission
ontrol rate the DICE model when i
e line damages are a

ounted for. As
an be seen from this graph the separation of di�erent damage stru
turesgives us a U-shaped poli
y where it is mitigate harder initially as opposed33See Nordhaus (2007) a

ompanying notes (p.23-25).34On page 24 of the a

ompanying notes of the DICE 2007 model there is an impa
tassessment by region and impa
t type. These are then weighted based on GDP estimatesfor 2105. As these weights are not provided it is thus not possible to ba
k out a spe
i�
region or impa
t type.35See A
kerman et. al. (2003) for a dis
ussion regarding di�erent values for theexponent of the damage fun
tion used in DICE.26
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Figure 3: Optimal emission 
ontrol rate with and without i
e line damages.to the normal gradualist poli
y. Although, these results are spe
i�
 to ourassumptions regarding the shape of the assumed damage fun
tion for the i
eline as well as the temperature 
omponent, it still exempli�es the sensitivityof the model to stru
tural 
hanges in the damage fun
tion and the impa
tof in
orporating insights from energy balan
e models..6 Summary, Con
lusions, and Suggestions for Fu-ture Resear
hIn this paper we introdu
e the e
onomi
s profession to spatial Energy Bal-an
e Climate Models (EBCM's) and show how to 
ouple them to e
onomi
models and still obtain analyti
al results of interest to e
onomists and poli
ymakers. While we believe this 
ontribution is of importan
e in its own right,we also show how introdu
tion of spatial 
onsiderations leads to new waysof looking at 
limate poli
y.In parti
ular by a

ounting for an endogenous i
e line and the asso
iatedi
e line damages, and a dis
ontinuous albedo we show that due to non-lineraities even simple e
onomi
-EBCMs generated multiple steady statesand poli
y ramps whi
h do not in general follow the `gradualist' predi
tions.These results 
arry over to more 
omplex models where the e
onomi
 modulehas an IAM stru
ture. The interesting issue from the emergen
e of multiplesteady states, is that when endogenous i
e line and dis
ontinuous albedoare ignored, as in traditional IAMs, the poli
y pres
ription of these models27




ould be the opposite of the poli
y di
tated by the e
onomi
-EBC models.Furthermore the spatial aspe
t of the EBCMs allows e
onomi
 justi
e ar-gument asso
iated with the spatial stru
ture of 
limate 
hange damages toshape poli
y rules. When we applied the damage fun
tion implied by theEBCMs and 
alibrated appropriately into the standard DICE model andrun the simulations the result was a U-shaped poli
y ramp whi
h indi
atesan important deviation from the gradualist poli
y ramp derived from thestandard DICE model. Thus a rapid mitigation poli
y 
an be justi�ed onthe new insights obtained by 
oupling the e
onomy with the EBCMs.We 
onsider this paper as a �rst attempt to bring together EBCMs ande
onomi
 models and to show how these models provide new insights whi
hhave not been obtained by the traditional IAMs, and furthermore that thesenew insights 
ould be important for poli
y design. Being a �rst attemptalso means that there are many areas for future resear
h. These areas rangefrom making the e
onomi
s more sophisti
ated by abandoning the simpli-fying assumption of linear utility; allowing for te
hni
al 
hange and knowl-edge spillovers a
ross latitudes; or introdu
ing strategi
 intera
tions amongregions,36 to extending the EBCMs. Future work that needs to be done re-garding EBCMs is extension to two dimensional spheri
al EBCM's be
auseEarth is a sphere, not a line. Bro
k and Judd (2010) are attempting to makea dent in this problem. They frame the problem as a re
ursive dynami
 pro-gramming problem where the state ve
tor in
ludes a number of �spheri
almodes� that are analogs of the modes in this paper as well as e
onomi
 statevariables. Another possible extension 
ould be the 
onsideration of new pol-i
y instruments. Emissions redu
tion a
ts on the outgoing radiation in thesense that by redu
ing emissions the outgoing radiation in
reases throughthe se
ond term of the right hand side of (2). Another kind of poli
y 
oulda
t on the �rst term of the right hand side of (2) in the sense of redu
ing thein
oming radiation. This type of poli
y might be asso
iated with geoengi-neering options. Finally a poli
y whi
h a
ts on the damage fun
tion in thesense of redu
ing damages for any given level of temperature and radiationbalan
e might be asso
iated with adaptations options. Uni�ed e
onomi
-EBCMs might be a useful vehi
le for analyzing the stru
ture and the tradeo�s among these di�erent poli
y options.
36These extensions will undoubtedly in
rease the 
omplexity and the 
omputationalneeds for solving the e
onomi
-EBCMs. 28



Appendix 1: The two mode solutionIn this appendix we show how to derive the two mode solution (8)-(16).We start with the basi
 PDE
∂I (x, t)

∂t
= QS (x, t)α (x, xs (t))−[I (x, t) − h (x, t)]+D

∂

∂x

[

(

1 − x2
) ∂I (x.t)

∂x

](75)The two mode solution is de�ned as:
Î (x, t) = I0 (t) + I2 (t)P2 (x) , P2 (x) =

(

3x2 − 1
)

2
(76)then

∂I (x, t)

∂t
=
dI0 (t)

dt
+
dI2 (t)

dt
P2 (x) (77)

∂I (x, t)

∂x
= I2 (t)

dP2 (x)

dx
= I2 (t) 3x (78)Substitute the above derivatives into (75) to obtain:

dI0 (t)

dt
+
dI2 (t)

dt
P2 (x) = QS (x, t)α (x, xs (t))− (79)

[I0 (t) + I2 (t)P2 (x) − h (x, t)] +D
∂

∂x

[

(

1 − x2
)

I2 (t)
∂P2 (x)

∂x

]

, or
dI0 (t)

dt
+
dI2 (t)

dt
P2 (x) = QS (x, t)α (x, xs (t))− (80)

I0 (t) − I2 (t)P2 (x) + h (x, t) − 6DI2 (t)P2 (x)Use:
∫ 1

0
Pn (x)Pm (x) dx = 〈Pn (x) , Pm (x)〉 =

δnm

2n+ 1
(81)

δnm = 0 for n 6= m, δnm = 1 for n = 1and note that P0 (x) = 1, P2 (x) =
(3x2−1)

2Multiply (80) by P0 (x) and integrate from 1, 0 to obtain
dI0 (t)

dt
+
dI2 (t)

dt
〈P0 (x) , P2 (x)〉 =

∫ 1

0
QS (x, t)α (x, xs (t))P0 (x) dx−(82)

I0 (t) − I2 (t) 〈P0 (x) , P2 (x)〉 +

∫ 1

0
h (x, t) dx−

6DI2 (t) 〈P0 (x) , P2 (x)〉 , or
dI0 (t)

dt
= −I0 (t) +

∫ 1

0
[QS (x, t)α (x, xs (t)) + h (x, t)] dx (83)29



Multiply (80) by P2 (x) and integrate from 1, 0 noting that ∫ 1
0 P2 (x) dx = 0,and 〈P2 (x) , P2 (x)〉 = 1

5 to obtain
dI0 (t)

dt

∫ 1

0
P2 (x) dx+

dI2 (t)

dt
〈P2 (x) , P2 (x)〉 = (84)

∫ 1

0
QS (x, t)α (x, xs (t))P2 (x) dx− (85)

I0 (t)

∫ 1

0
P2 (x) dx− I2 (t) 〈P2 (x) , P2 (x)〉− (86)

∫ 1

0
h (x, t)P2 (x) dx− 6DI2 (t) 〈P2 (x) , P2 (x)〉 , or

1

5

dI2 (t)

dt
=

[
∫ 1

0
QS (x, t)α (x, xs (t)) + h (x, t)

]

P2 (x) dx−

1

5
I2 (t) −

6

5
DI2 (t) , or

dI2 (t)

dt
= − (1 + 6D) I2 (t) + 5

∫ 1

0
[QS (x, t)α (x, xs (t)) + h (x, t)]P2 (x) dx(87)The ODEs (83) and (87) are the ODEs (9), (11) of the two mode solution(8)-(16). The solutions of these ODEs shown in (10) and (13) follow fromstandard methods.
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Appendix 2This se
tion drafts some of the more spe
i�
 assumptions on whi
h �gure 1is based. The produ
tion fun
tion in (32) is assumed to take the followingform:
f(k − k2, h+ φk2) = (k − k2)

α(h+ φk2))
β (88)with α > 0, β > 0. The solution to problem (32) is derived from the �rstorder 
onditions:

∂f

∂k
= α(k − k2)

α−1(h+ φk2))
β − (η + ρ) = 0 (89)

∂f

∂k2
= −α(k − k2)

α−1(h+ φk2))
β + βφ(k − k2)

α(h+ φk2))
β−1 = 0 (90)Solving the system (89) and (90) for k and k2 gives the solution to problem(32).

k∗2(h) =
1

φ

(

(η + ρ)

α

(

α

φβ

)1−α
)

1

α−1+β

−
h

φ

k∗(h) =
α

φβ
h+

(

1 +
α

β

)

k∗2(h)Plugging these values ba
k into (32) allows us to write π(h) as a linearfun
tion of h:
π(h) = A+Bhwith
A :=

(

α

φβ

)α
(

(η + ρ)

α

(

α

φβ

)1−α
)

α+β

α−1+β

− (η + ρ)
(1 + φ)

φ

(

(η + ρ)

α

(

α

φβ

)1−α
)

1

α−1+β

B := −(η + ρ)

(

α

φβ
−

(1 + φ)

φ

)whi
h is in
reasing in h given that α/β < (1 + φ). Assuming also that
D1(T ) = 0.5a1T

2,D2(T ) = a2 exp(−2T )T 2 and c(h) = chh
2, where a1, a2, ch >

0.37 Substituting this into (33) and using the �rst order 
ondition we 
anthus derive the 
anoni
al system:
dT

dt
= aT − bTT + cT

B + λT cT
2ch

, T (0) = T0 (91)
dλT

dt
= (ρ+ bT )λT + a1T − 2a2e

−2T (T − 1)T (92)37Note that these fun
tions have the properties des
ribed in se
tion 3.31



From (91) and (92) it is easy to 
on�rm the shape of the iso
lines depi
ted in�gure 1. For the numeri
al 
al
ulations of the solution paths and the Skibapoint we used a numeri
al methods des
ribed in Grass (2008, 2010). Theparameter values used for the numeri
al 
al
ulations are given in the tablebelow:Parameter Value Des
ription
ρ 0.02 dis
ount rate
α 0.3 marginal produ
tivity of 
apital
β 0.6 marginal produ
tivity of energy
η 0.1 depre
iation rate of 
apital
φ 0.9 e�
ien
y parameter of 
lean energy
a1 0.09 damage parameter of D1(T )
a2 0.7 damage parameter of D1(T )
s 0 parameter of the s
rap value fun
tion
aT 0.8 parameter of temperature equation
bT 0.6 parameter of temperature equation
cT 0.85 parameter of temperature equationTable 1: The parameter values for �gure 1.
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