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Energy balane limate models and the eonomisof limate hangeWilliam A. Brok∗, Gustav Engström†‡and Anastasios Xepapadeas§January 26, 2011AbstratSpatial energy balane models are used by limate sientists tohelp understand limate dynamis and to assist onstrution of moreomplex general irulation models and to explain the output of suhmodels. In this paper we present the �rst, to our knowledge, oupledspatial energy balane and eonomi growth model. We show how thespatial aspets of limate dynamis aptured by our model leads tonew insights on: (i) The ontentious issue of whether a gradualist ap-proah to mitigation of limate hange by, for example, arbon taxesis preferable to an initially more aggressive approah, (ii) The e�et ofmelting polar ie aps on optimal poliy, (iii) Robustness of optimallimate poliy to spatial damage unertainty, and (iv) Eonomi justieonsiderations raised by variation in spatial damages, e.g. variation inlatitude spei� damages . For example the endogenously moving ieline of shrinking polar ie aps in our model leads to initially a moreaggressive poliy ramp followed by a less aggressive segment followedby a similar ramp as poliy ramps of the gradualist type.Keywords: Spatial energy balane models, limate hange, ie line, eo-nomi growth1 IntrodutionThis paper presents the �rst, to our knowledge, oupled spatial energy bal-ane limate model (EBCM) integrated with an eonomi growth model.It introdues solution methods for spatial limate models that may be new
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to eonomis and it integrates these methods with the standard methodsof solving eonomi models. Before we proeed further we believe that itis useful to point out why this is worth doing by providing an importantexample at the outset.It appears that muh of the urrent sienti� disussion about limatehange onentrates around the alulation of the true osts of global limatehange and the impliations of these alulations for poliy design, an issuewhih relates diretly to the deision to undertake or not poliy ation andits time pro�le. It seems that among eonomists there is no longer a debateon whether ation should be taken or not. Carey (2011) quotes Mendelsohnas stating that:"The debate is how muh and when to start. If you believe thatthere are large damages, you would want more drasti immedi-ate ation. The Nordhaus amp, however, says we would startmodestly and get tougher over time".Thus the debate among eonomists in dealing with limate hange on themitigation side has basially settled on whether to inrease mitigation e�orts(e.g. arbon taxes) gradually (e.g. Nordhaus (2007, 2010, 2011)) versusthose who believe we should mitigate rapidly. Stern (2006) justi�es the allfor immediate ation on the normative grounds of using a low disount rateto disount the future osts of limate hange. Weitzman (2009a) and in hisrebuttal of Nordhaus (Weitzman , 2009b) argues that the possibility of lowprobability limate atastrophes strengthens the ase for quik ation nowto mitigate potential atastrophi limate hange. His argument is basedon bad fat tails in the distribution of future damages from limate hange.Sterner and Persson (2010) justify strong and urgent ation by aountingfor non-market damages from limate hange, while Weitzman (2010) basedon two risk aversion axioms disusses poliy impliations stemming from thedistintion between additive and multipliative dis-utility damages.1This paper attempts to provide new insights regarding the debate of�how muh and when to start� using as starting point the temporal andthe spatial struture of damages from limate hange whih is implied bythe siene of limate hange, without resorting to arguments regarding thehoie of the disount rate, the struture of unertainty, or the rising relativepries for environmental amenities. Although all these fators are importantin deiding �how muh and when to start�, we believe that by framing theproblem in a way that limate siene implies the struture, the spatial, andthe time pro�le of damages provides a sound and potentially empiriallyjusti�ed approah to poliy making.1Judd and Lontzek (2011) have formulated a dynami stohasti version of DICEwhih they all, DSICE. They also extend their model to inlude stohasti tipping pointpossibilities. They show how this additional real world omplexity substantially a�etsthe optimal poliy results in omparison to DICE2



Thus the oupling of dynami eonomi growth models with dynamispatial EBCMs that we undertake in this paper enables us, as we will makelear in the rest of the paper, to obtain new insights about the intertemporalshape and the spatial shape of the distribution funtion of damages and totranslate these insights into poliy rules regarding the time and spatial pathsof mitigation e�orts.2A popular lass of EBCMs are the models of North (North (1975a),North (1975b)), North, Cahalan and Coakely (1981), and Wu and North(2007).3 Although the EBCMs that we use are simple limate models, manyuseful insights into limate dynamis an arise from these simple models(Pierrehumbert , 2010). A large lass of the EBCMs whih we fous upon,have an endogenous ie line where latitudes north (south) of the ie line aresolid ie and latitudes south (north) of the ie line are ie free. There hasbeen a lot of onern about the e�ets of ie melting, i.e. the ie lines beingpushed loser to the North and South Poles by global warming,4 and theinorporation of these e�ets into eonomi models might e�et deisions toengage in large mitigation e�orts now.To be more preise, when the ie lines move loser to the poles marginaldamages from moving will be large at �rst and then diminish as the ieline approahes the Poles. This makes sense. When there is a lot of ieto melt the damages would be larger than when there is almost no ie leftto melt. Hene the marginal damages plausibly are higher when the polarie aps are larger. To put it another way the potential damages from iemelt should be larger when there's a larger soure of ie to melt. Let usexplain this argument in more detail. Suppose human e�ets are ausingthe ie lines to move loser to the Poles. Suppose damages from this e�etare proportional to the amount of ie melting. Let x denote the sine of thelatitude as in North (1975a,b) and assume that the ie line is at latitude
xs from the North Pole (at the the North Pole x = 1). Let us onsidernow damages from moving the ie line by dx towards the North Pole. Theie area lost in the Northern Hemisphere when the Northern ie line is at
xs is approximately proportional to 2π (1 − xs) dx for small dx. Thus ashuman ativities move the ie line towards the North Pole the ie area lostdiminishes and marginal damages diminish also.5 The argument of ie line2We hasten to add that the basi argument of eonomists, e.g., Nordhaus (2007), thattaxing arbon in a harmonized manner is the e�ient poliy still stands in our spatialsetting.3See also the book by Pierrehumbert (2010) that overs in a very nie way the generalpriniples of planetary limate as well as limate models inluding EBCMs.4Of ourse these simple models do not apture elements of potentially abrupt hangesin ie melting and its impat on oastlines that are stressed by, for example, MihaelOppenheimer and his o-authors (Oppenheimer (2000, 2005), Little, Gnanadesikan andOppenheimer (2009), but nevertheless they provide useful insight into the expeted e�etsof limate hange.5Of ourse these damages whih are larger for larger ie aps and shrink as the ie3



dynamis, whih was just skethed above but will be analyzed in detail inthe paper, supports arguments for rapid ramping up of mitigation e�orts(e.g. Weitzman, Stern) and is suggestive of the value added from developinguni�ed eonomi and energy balane limate models.Another issue that eonomi-EBCMs ould provide new insights relatesto the argument that the gradualist poliy ramp may not be robust to otherplausible spei�ations is the eonomi justie argument of Rawls, i.e. thatglobal poliy should be to maximize the welfare of the worst o� region.For example, Nordhaus (2007) and Dell, Jones and Olken (2008) pointout that poorer (and more tropial) regions are projeted to su�er moredamages from limate hange than wealthier (and more temperate) regions.A Rawlsian objetive would maximize the welfare of the least well o� region.In our spatial model this objetive ould be formalized by maximization ofthe least well o� latitude.6 7Remaining with the spatial aspets of the EBCMs this is a good pointto further disuss what kinds of questions we may hope to address with aspatial limate model in oupled limate eonomi modeling that an not beaddressed with models like that of Nordhaus (2007, 2010). For example,Nordhaus's RICE 2010 divides the world into US, EU, Japan, Russia, Eura-sia, China, India, Middle East, Afria, Latin Ameria, Other high inome,Other developing Asia. The limate dynamis of RICE 2010 are�mass of arbon in reservoir for atmosphere, upper oeans, andlower oeans,. . . global mean surfae temperature, of upper oeans,temperature of lower oeans.� Nordhaus (2010)Dynamis of these quantities are distributed lag equations of past quan-tities and the global mean surfae temperature dynamis is also a funtionof urrent radiative foring, but there is no spatial geography. It is probablyuseful to think of Nordhaus's quantities on the limate side of the modelas some sort of aggregates over spatial dimensions. In his book, Nordhaus(2007) states that the damage funtions ontinue to be a major soure ofaps shrink are just the damages aused by the release of water from the thawing ie, i.e.the rise in sea levels aused by thawing ie. There may be other damages aused by theinreasing loss of the ie aps and their role in regulating the limate.6To do a more aurate job of �nding the optimal poliy ramp of, say, arbon taxes,under a Rawlsian objetive, .we would need a spherial two dimensional model like thatof Brok and Judd (2010). However the one dimensional models onsidered here provideuseful insights without the omplexity of two dimensional models.7Rawlsian objetives may strike the reader as rather �starry eyed� from the point of viewof wealthier parts of the world. However, elements suh as national seurity onerns maydrive enlightened self interest on the part of wealthier regions to at more like Rawlsians.At the very minimum one should design poliy to be robust against unertainty in thespei�ation of the proper poliy objetive funtion as well as unertainty in limate andeonomi dynamis. 4



modeling unertainty in the DICE model. A reent study of limate dam-ages due to temperature and preipitation hanges is Dell, Jones and Olken(2008) whih found that levels and growth rates of the eonomies of poorerparts of the world were damaged more than levels and growth rates of thewealthier parts of the world. The wetter regions of the world are expetedto beome wetter and the dryer regions of the world are expeted to beomedryer (GFDL, 2008). We proxy this kind of e�et of limate hange in thispaper by a damage funtion for an area A where damages inrease as meanarea A temperature inreases and variane area A temperature inreases.More will be said about this below.To summarize we believe that the main ontribution of our paper is toouple spatial limate models with endogenous ie lines, with eonomi mod-els, and use these spatial limate siene models to disipline the strutureand the shape of potential damage funtions, in order to provide new insightsregarding the optimal time pro�le for urrent and future mitigation. To putit another way this paper ouples the eonomi models we use all the time ineonomis with a lass of spatial limate models used by limate sientists.We believe this endeavor apart from being valuable in its own right, providesnew insights regarding the temporal and spatial paths of poliies designedto address limate hange .Sine energy models are new in eonomis we proeed in steps that webelieve make this methodology aessible to eonomists. In setion 2 wepresent a basi energy balane limate model8 whih inorporates humanimpats on limate. In developing the model we follow North (1975a,b)and use his notation. We use the model to expose solution methods andespeially the two mode approah whih transforms the systems of partialdi�erential equations (PDEs) in in�nite dimensional spaes resulting fromspatial modelling, to systems of ordinary di�erential equations (ODEs) in �-nite dimensional spaes. The two mode approah will be extensively used tosolve the integrated eonomi-EBC model. In setion 3 we ouple a simpli-�ed version of the energy balane model, with a simple eonomi model andshow that ie line damages expliitly introdued through the EBCMs, sug-gest even at this very simple level, the possibility of multiple steady states,history dependene in the optimal paths and rapid now, instead of gradualmitigation. Setion 4 uses the insights of the previous setions to ouple aspatial EBCM with an eonomi model that has the struture of the wellknown integrated assessment model RICE. We use this approah to disiplinethe temporal and spatial shape of the damage funtion. In this more tradi-tional, on the part of the eonomis, modeling we obtain results similar tothe more simpli�ed model of setion 3, regarding multiple steady states and8For more on EBCMs see for example Pierrehumbert (2010) (hapters 3 and 9, es-peially setions 9.2.5 and 9.2.6 and surrounding material). North, Cahalan and Coakely(1981) is a very informative review of EBCM's. while Wu and North (2007) is a veryreent paper on EBCM's. 5



history dependene of the optimal paths, and insights about the spatial andtemporal struture of optimal mitigation poliies. Motivated by this mod-elling exerise we turn, in setion 5 in analyzing DICE, the most popular ofthe integrated assessment models, in the ontext of damage funtion impliedby our approah. We provide numerial results by running the DICE modelwith expliit ie line damages whih have a time pro�le onsistent with thepro�le implied by the EBCMs we developed in this paper. Our numerialresults suggest that U-shaped poliy ramps where we mitigate rapidly at thebeginning to defend against the ie-ap loss, we slow down as damages fromthe ie aps are redued and then inrease mitigation as damages from theoverall inrease in temperature dominate, ould be optimal poliies. The�nal setion onludes.2 A Basi Energy Balane Climate ModelIn this setion we develop a one-dimensional Energy Balane Climate Modelwith human inputs. The term `one-dimensional' means that there is anexpliit one dimensional spatial dimension in the model so that our uni�edmodel of the limate and the eonomy evolves both in time and spae. Wefollow North (1975a,b) and North, Cahalan and Coakely (1981) in thisdevelopment.Let x to denote the sine of the latitude. We shall abuse language andjust refer to x as �latitude�. Following North (1975a,b) let I(x, t) denoteoutgoing infrared radiation �ux measured in W/m2 at latitude x at time t,
T (x, t) denote surfae (sea level) temperature measured in oC at latitude xat time t. The outgoing radiation and surfae temperature an be relatedthrough the empirial formula.9

I(x, t) = A+BT (x, t), A = 201.4W/m2, B = 1.45W/m2 (1)Following North (North (1975a), equation (29)) the basi energy balaneequation with a human input an be written as:
∂I (x, t)

∂t
= QS (x, t)α (x, xs (t))−[I (x, t) − h (x, t)]+D

∂

∂x

[

(

1 − x2
) ∂I (x.t)

∂x

](2)where units of x are hosen so that x = 0 denotes the Equator, x = 1denotes the North Pole, and x = −1 denotes the South Pole; Q is the solar9It is important to note that the original Budyko (1969) formulation ited by Northparameterizes A, B as funtions of fration loud over and other parameters of the limatesystem. North (1975b) points out that due to nonhomogeneous loudiness A and B shouldbe funtions of x. There is apparently a lot of unertainty involving the impat of louddynamis (e.g. Trenberth et. al. (2010) versus Lindzen and Choi (2009)). Hene robustontrol in whih A, B are treated as unertain may be alled for but this is left for furtherresearh.. 6



onstant10 divided by 4; S (x, t) is the mean annual meridional distributionof solar radiation whih is normalized so that its integral from 0 to 1 is unity;
α (x, xs (t)) is the absorption oe�ient whih is one minus the albedo of theearth-atmosphere system, with xs (t) being the latitude of the ie line at time
t; and (2) D is a thermal di�usion oe�ient that it has been omputed as
D = 0.649Wm−2oC−1 (North, Cahalan and Coakely (1981))Equation (2) states that the rate of hange of outgoing radiation isdetermined by the di�erene between the inoming absorbed radiant heat
QS (x, t)α (x, xs (t)) and the outgoing radiation [I (x, t) − h (x, t)] . Note thatthe outgoing radiation is redued by the human input h (x, t) . Thus the hu-man input at time t and latitude x, an be interpreted as the generationof greenhouses gases (GHGs) that redue outgoing radiation. Sine GHGsan be regraded as a funtion of produed output at latitude x, we maywrite h (x, t) = f (y (x, t)) where y (x, t) is produed output at (x, t) . Aspointed out by North (1975b), in equilibrium at a given latitude the in-oming absorbed radiant heat is not mathed by the net outgoing radiationand the di�erene is made by the meridional divergene of heat �ux whih ismodelled by the term D ∂

∂x

[

(

1 − x2
) ∂I(x.t)

∂x

]

. This term expliitly introduesthe spatial dimension into the limate model. Sine the spatial domain hasone dimension the model is alled one-dimensional in ontrast to the zero-dimensional model where the spatial dimension is not taken into aountexpliitly. The energy balane equation (2) inorporates, for the �rst timeto our knowledge, eonomi variables - output prodution - in an energybalane model. The importane of this is that by modelling ie line damagesand disontinuous albedo, issues whih are not taken into aount into stan-dard IAMs, we identify the existene of nonlineraities and multiple steadystate for the uni�ed eonomy-limate model whih ould be important inpoliy design and the identi�ation of new poliy ramps. 11Returning to the desription of (2), above the ie line absorption dropsdisontinuously beause the albedo jumps disontinuously. We will followNorth (1975b), page 2034, equation (3)) and put
α (x, xs) =















b0 = 0.38 x > xs

α0 + α2P2 (x) x < xs

α0 = 0.697
α1 = −0.0779

(3)where P2 (x) =
(

3x2 − 1
)

/2 is the seond Legendre polynomial.12 In this set10The solar onstant inludes all types of solar radiation, not just the visible light. It ismeasured by satellite to be roughly 1.366 kilowatts per square meter (kW/m2).11Note that at this stage output is regarded as an exogenous foring parameter in orderto inrodue the EBCM in a lear way. Output will be endogenized in the uni�ed eonomy-EBC models that we develop in the next setions12A smoothed version of (3) is Equation (38) of North, Cahalan and Coakely (1981),(p. 98). 7



up the ie line is determined dynamially by the ondition: (Budyko (1969),North (1975a), North (1975b))
T > −10oC no ie line present
T < −10oC ie present (4)The ie line funtion xs (t) solves the equation Is = I (xs (t) , t) . Thusthe latitude of the ie line an move in time in response to hanges in humaninput sine the ie line solution depends on h (x, t) . Moving of the ie linetowards the poles generates the damages we disussed in the introdution.Using 1 and 4 the outgoing radiation at the latitude of the ie line for eahdate t is
I (xs) = Is = 195.7 W/m2 (5)A steady state for the outgoing radiation is a funtion of latitude Ī (x)whih satis�es the equation

0 = QS (x)α (x, x̄s) −
[

Ī (x) − h̄ (x)
]

+D
∂

∂x

[

(

1 − x2
) ∂Ī (x.t)

∂x

] (6)while the steady state ie line will satisfy Is = Ī (x̄s) with Is determined by(5).The way to approah this problem would be to solve (2) for a givenhuman input funtion h (x, t) and to obtain a solution funtion I (x, t) . Thenusing (1) the temperature and the ie line at eah date and latitude an bedetermined. When the human input hanges this solution an be used totrae the impat of the human input on outgoing radiation, the surfaetemperature and the ie line at eah latitude. Sine temperature and ieline hanges are assoiated with damages this type of modeling allows toinorporate spatial impats and di�erent soures of limate damages intothe damage funtions used in the eonomis of limate hange.We turn mow to a more detailed analysis of the solution proess. Equa-tion (2) is a PDE. One might think that we are going to have to deal withthe ompliated mathematial issues of the solution or the optimal ontrol ofPDEs when we need to disuss the soial optimization problems over spae.But, as we shall see, the limate problem redues to the optimal ontrol ofa small number of �modes� where eah �mode� follows a simple ODE. Webelieve this deomposition is another important and new ontribution of ourpaper to the study to oupled eonomi and limate models. Let us on-tinue with the development of the solution proedure for equation (2) beforeturning to optimization.North (1975b) approahed the solution of (2) by using the approximationmethods (Judd (1998) Chapter 6). Thus the solution is approximated as:
I (x, t) =

∑

n even In (t)Pn (x) (7)8



where In (t) are solutions to appropriately de�ned ODEs and Pn (x) areeven numbered Legendre polynomials. A satisfatory approximation of thesolution for (2) an be obtained by the so alled two mode solution where
n = {0, 2} . We develop here a two mode solution given the human foringfuntion h(x, t). We do it for the Northern Hemisphere only sine, followingNorth, we treat the Southern Hemisphere symmetrially.13 The two modesolution is de�ned as
Î (x, t) = I0 (t) + I2 (t)P2 (x) (8)
dI0
dt

= −I0 (t) +

∫ 1

0
[QS2 (x)α (x, xs (t)) + h (x, t)] dx, I0 (0) = I00 (9)

I0 (t) = e−t

[

I00 +

∫ t

0
eu [QS0 (xs (u)) + h0 (u)] du

] (10)
dI2
dt

= − (1 + 6D) I2 (t) + 5

∫ 1

0
[QS2 (x)α (x, xs (t)) + h (x, t)]P2 (x) dx,(11)

I2 (0) = I02 (12)
I2 (t) = e−(1+6D)t

[

I02 +

∫ t

0
e(1+6D)u [QS2 (xs (u)) + h2 (u)] du

] (13)
Sn (xs) =

∫ 1

0
S (x)α (x, xs)Pn (x) dx , hn (t) =

∫ 1

0
h (x, t)Pn (x) dx (14)

S (x) = 1 + S2P2 (x) , S2 = −0.482, n = 0, 2 (15)
P0 (x) = 1, P2 (x) =

(

3x2 − 1
)

2
(16)The derivation of the solution is presented in Appendix 1.14 Given thede�nitions of the funtional forms the two mode solution is tratable andan be alulated given initial onditions I00, I02 whih are determined byinitial limate. As shown below, the two mode solution an be used to obtaintratable solutions regarding the ie line and temperature T (x, t) .2.1 The two mode approximation of ie line funtionThis is a funtion xs (t) that solves

Is = I0 (t) + I2 (t)P2 (xs (t)) (17)13Of ourse the two hemispheres are very di�erent in reality, but we abstrat from thatomplexity here.14The two mode solution is an approximating solution. We an develop a series ofapproximations of inreasing auray by solving this problem for expansions using (a�two mode� solution) and using (a �three mode� solution) and so on. North results suggestthat the two mode solution is an adequate approximation.9



To determine the two mode ie line funtion through (17) the disonti-nuity in the albedo expressed by (3) and (4) should be taken into aount.This an be done by applying to the two mode solution for the ie and theie free areas, value mathing, smooth pasting and appropriate boundaryonditions at the pole and the equator North (1975a). This funtion, whihmay not be unique, will depend on the human input h (x, t) .To obtain the two mode approximation steady-state ie line (9) and (11)are used. The steady state values for the I ′s are given by
Ī0 = QS0 (x̄s) + h̄0 , Ī2 =

5
[

QS2 (x̄s) + h̄2

]

1 + 6D
(18)where it is assumed thatas t→ ∞,

∫ 1

0
h (x, t) dx→ h̄0 and ∫ 1

0
h (x, t)P2 (x) dx→ h̄2. (19)The two mode steady state ie line is the solution of Is = Ī0 + Ī2P2 (x̄s) ,andan be obtained by using value mathing, smooth pasting and appropriateboundary onditions. It is important to note that there may be more thanone solutions to the ie line.2.2 The two mode approximation of the surfae temperatureIn the ontext of the two mode approximations, we may use the two modeexpression for I(x, t) to obtain a two mode expression for surfae (sea level)temperature T (x, t), i.e T̂ (x, t) = T0 (t)+T2 (t)P2 (x) where T0 (t) and T2 (t)solve the ordinary di�erential equations.

BdT0

dt
= − (A+BT0 (t)) +

∫ 1

0
[QS2 (x)α (x, xs (t)) + h (x, t)] dx (20)

BdT2

dt
= − (1 + 6D)BT2 (t)+ (21)
5

∫ 1

0
[QS2 (x)α (x, xs (t)) + h (x, t)]P2 (x) dx

T0 (0) = T00, T2 (0) = T02 (22)The ie line funtion xs (t) in terms of the temperature solves
T0 (t) + T2 (t)P2 (xs (t)) = Ts, Ts = −10oC (23)and an be determined using the value mathing onditions desribed above.From the two mode approximation of the temperature, we obtain the globalmean temperature mT = T0 (t) , whih is the integral of T̂ (x, t) over x fromzero to one15, and the variane of the temperature,

VT =

∫ 1

0

[

T̂ (x, t) − T0 (t)
]2
dx =

∫ 1

0
(T2 (t)P2 (x))2 dx =

(T2 (t))2

5
(24)15This beause ∫ 1

0
P2 (x) dx = 0. 10



Loal temperature means at latitudes (x, x + dx) and the mean of tem-perature over the set of latitudes Z = [a, b] are de�ned by
[T0 (t) + T2 (t)P2 (x)] dx,m [a, b] =

∫ b

a
[T0 (t) + T2 (t)P2 (x)] dx (25)while the variane of temperature over the set of latitudes Z = [a, b] is

V [a, b] =

∫ b

a
[T0 (t) + T2 (t)P2 (x) −m [a, b; t]]2 dx (26)When the area Z = [a, b] is introdued, It is plausible to assume thatutility in eah area [a, b] depends upon both the mean temperature and thevariane of temperature in that area. For example we may expet inreasesin temperature variane to have negative e�ets on output in any area Zwhether it is loated in tropial, temperature, or older latitudes. Whereasmean temperature inreases in some areas Z (e.g. Siberia) may inreaseutility rather than derease utility.16 Existing dynami integrated models oflimate and eonomy, (e.g. Nordhaus's well known work (2007), (2010)) annot deal with these kinds of spatial elements, suh as impats of hanges intemperature variane, generated by limate dynamis over an area Z.The two mode approximate solutions (8)-(16) and (20)-(22) are equiv-alent beause they are related by I = A + BT. Sine the existing modelsof limate and eonomy, model limate in terms of temperature we are go-ing to use this equivalene to develop energy balane models of eonomyand limate using temperature as the state variable diretly assoiated withlimate. We introdue suh a model in the next setion.3 A Simple Integrated Dynami Eonomi - Cli-mate ModelIn this setion we develop a simpli�ed integrated model of eonomy andlimate, with the limate part motivated by the energy balane models de-sribed above. The limate part should inorporate state variables relatedto the two mode temperature solution and an ie line equation. The two-mode temperature solution is T̂ (x, t) = T0 (t) + T2 (t)P2 (x) . Wang andStone (1980) argue that an approximation for this solution equation anbe ahieved by replaing T2 (t) by an appropriate onstant, whih we shalldenote by T̄ . Then (dT̂ (x, t) /dt

)

= (dT0 (t) /dt) . Reall that T0 (t) is global16In a stohasti generalization of our model, we may introdue a stohasti proess torepresent �weather,� i.e. very high frequeny �utuations relative to the time sales we aremodeling here. Here the �loal variane� of high frequeny phenomena like �weather� mayhange with hanges in lower frequeny phenomena suh as mean area Z temperature andarea Z temperature variane. We leave this task to future researh.11



mean surfae (sea level) temperature. Then the evolution of the mean tem-perature is given by (20) or, by setting T0 (t) = T (t)

dT (t)

dt
= −

A

B
− T (t) +

1

B

∫ 1

0
[QS2 (x)α (x, xs (t)) + h (x, t)] dx (27)Thus the Wang-Stone approximation redues the state variables from two,in the model (20)-(21), to one whose evolution is desribed by (27). Wangand Stone (1980) (equation 3) alibrate the model by best �tting the twomode solution to data and use this approximation to get a simple equationfor the ie line

xs (t) = (aice + biceT (t))1/2 , aice = 0.6035, bice = 0.02078 (28)Damages from limate hange emerge both form temperature inreaseand movement of the ie line towards the north. Let us de�ne these damagesby two funtions D1 (T (t)) and D2 (xs (t)) , where 1 denotes damages dueto temperature rise and 2 denotes damages due to ie line movement. Asimpli�ed integrated eonomi limate model an be developed along thefollowing lines.We assoiate human input with GHGs emissions and we denote by E (x, t) =
γh (x, t) the emissions assoiated with human input h (x, t) . These emis-sions a�et the temperature dynamis of our simpli�ed limate model. Wefurther assume, as is plausible, that at eah latitude emissions disperserapidly, relative to the longer time sale of our analysis aross latitudes,so that ∫ 1

0 γh (x, t) dx = γh (t) . We onsider a simpli�ed eonomy with ag-gregate apital stok k. An amount k2 from this apital stok is divertedto alternative `lean tehnologies'. Output in this eonomy is produedby apital and emissions h aording to a neolassial prodution funtion
f (k − k2, h+ φk2) , where φ is an e�ieny parameter for lean tehnolo-gies. The ost of using a unit of h is ch (h) ,with ch (0) = 0, c

′

h > 0, c
′′

h > 0.The use of emissions an be redued by employing lean tehnologies at ane�etive rate φk2. Denoting onsumption by c, net apital formation is oursimpli�ed eonomy is desribed by
dk

dt
= f (k − k2, h+ φk2) − c− ch (h) − δk (29)where δ is the depreiation rate on the apital stok. Assuming a linearutility funtion or U (c) = c the problem of a soial planner that seeks tomaximize disounted live time onsumption subjet to (27), (28), and (29)an be desribed, in the ontext of a integrated eonomi/limate model, in

12



terms of the following most rapid approah path (MRAP) problem.17
V (T (0)) = max

∫ ∞

0
e−ρt [f (k − k2, h+ φk2) − ch(h) − (δ + ρ)k (30a)

−D1 (T (t)) −D2 (xs (t))] dtsubjet to (28) and (30b)
dT (t)

dt
= −

A

B
− T (t) +

γ

B
h (t) +

1

B
ψ (T (t)) , (30)

ψ (T (t)) =

∫ 1

0
[QS2 (x)α (x, xs (t))] dx , T (0) = T0 (30d)where V (T (0)) is the urrent value state valuation funtion, ρ is the sub-jetive rate of disount on future utility,and the nonlinear funtion ψ (T (t))is an inreasing funtion of T (North (1975a)). Problem (30a)-(30d) afterthe suessive approximations has been redued regarding the limate partto a `zero-dimensional' model. We still believe that this exerise is of valuebeause it outlines a pathway to extensions to one dimensional models and iseven suggestive via the Legendre basis method of how one might potentiallyextend the work to two dimensional models on the sphere.18 Problem (30a)-(30d) is in priniple tratable to one dimensional phase diagram methodswith the ostate variable on the vertial axis and the state variable on thehorizontal axis. However, we feel that insights are gained more rapidly by an-alyzing the following qualitatively similar problem that is strongly motivatedby the problem (30a)-(30d).

V (T (0)) = max

∫ ∞

0
e−ρt [f (k − k2, h+ φk2) − ch(h) − (δ + ρ)k (31a)

−D1 (T ) −D2 (T )] dts.t. dT
dt

= aT − bTT + cTh , (aT , bT , cT ) > (0, 0, 0) (31b)where D′

1 (T ) = a1T, implying inreasing marginal damages due to tem-perature inrease, while D′

2 (T ) is a funtion inreasing at low T reahinga maximum and the dereasing gradually to zero. The shape of D2 (T ) isintended to apture initially inreasing marginal damages from ie line rise17The assumption of linear utility allows one to write a apital aumulation problemas a MRAP problem Problem (30a) is an approximation of the MRAP problem for verylarge B and −B ≤ dk

dt
≤ B. In problem (30a) apital,k, an thus be eliminated as a statevariable.18Brok and Judd (2010) are developing a two dimensional spherial oupled li-mate/eonomi dynamis model by using a basis of spherial harmonis as in Wu andNorth (2007). This approah, as well as the Legendre basis approah we are using in thispaper for one dimensional models �ts in niely with the general approah to approximationmethods in Judd's book (Judd (1998), Chapter 6)13



(indued by temperature rise) whih reah a maximum, as temperature in-reases, and eventually vanish one the polar ie aps are gone. De�ne
π (h) = max

k≥0,k2≥0
{f (k − k2, h+ φk2) − (η + ρ) k} (32)Sine we assume that f(·, ·) is onave inreasing, π (h) is an inreasing on-ave funtion of h.19 We may now write down the urrent value Hamiltonianand the �rst order neessary onditions for an optimum,

H (h, T, λT ) = π (h) − ch (h) −D1 (T ) −D2 (T ) + λT (aT − bTT + cTh)(33)
π′ (h) = c′h − λT cT ⇒ h = h∗ (λT ) , h∗

′

(λT ) > 0 (34)where it is understood in (34) that the inequality onditions of boundarysolutions are inluded, and
dT

dt
= aT − bTT + cTh

∗ (λT ) , T (0) = T0 (35)
dλT

dt
= (ρ+ bT )λT + a1T +D′

2 (T ) (36)We know that sine λT (t) = ∂V (T (t))
∂T (t) := V ′ (T (t)) < 0 the ostate variablean be interpreted as the shadow ost of temperature. We also know thatif a deentralized representative �rm pays an emission tax then the path ofthe optimal emission tax is −λT (t) . We an study that properties of steadystates of problem (30a)-(30d) by analyzing the phase portrait implied by(35)-(36). The isoline dT/dt = 0 is easy to draw for (35). Along thisisoline we have dλT

dT = bT

cT h∗′
> 0, by using (34), thus along this isoline λTis inreasing in T. There is a value λTc suh that if λT (t) < λTc then h∗ = 0and aT /bT = T . If there are no ie line damages, the dλT /dt isoline is justa linear dereasing funtion of T that is zero at T = 0, or λT = − a1

(ρ+bT )T,whih implies that λT < 0 for all T > 0. Now add the ie line damage tothis funtion. The isoline is de�ned as
λT | dλT

dt
=0

= −
a1T +D′

2 (T )

(ρ+ bT )
.
dλT

dT
= −

a1 +D
′′

2 (T )

(ρ+ bT )
(37)With a gamma funtion representation of D2 (T ) , D

′′

2 (T ) is positive and de-reasing, it beomes negative, reahes a minimum and vanishes after beom-ing positive again. This indues a nonlinearity to the dλT /dt = 0 isoline.In general it is expeted that this isoline will have a urved N shape, whihmeans that with an inreasing dT/dt = 0 isoline if a steady state (T̄ , λ̄T

)19Note that π′ (0) < ∞ if φ > 0 for the alternative �lean� tehnology.14



exists, there will be either one or three steady states. To study the stabilityproperties of these steady states we form the Jaobian matrix of (35)-(36)
J
(

T̄ , λ̄T

)

=

(

−bT cTh
∗′
(

λ̄T

)

a1 +D
′′

2

(

T̄
)

bT + ρ

) (38)If at a steady state α1+D
′′

2

(

T̄
)

> 0 so that the dλT /dt = 0 isoline is de-reasing then det J
(

T̄ , λ̄T

)

< 0 and the steady state is a loal saddle point. If
α1+D

′′

2

(

T̄
)

< 0 so that the dλT /dt = 0 isoline is inreasing the steady stateis an unstable spiral.20 Thus when a unique steady state exits it will be asaddle point. The ase of three andidate optimal steady states T̄1 < T̄2 < T̄3is of partiular interest. In this ase given the shapes of the two isolines thesmallest one and the largest one are saddles and the middle one is an unsta-ble spiral. Thus we have a problem muh like the lake problem analyzed byBrok and Starrett (2003). However, λT (t) = V ′ (T (t)) < 0 for our problemthe phase diagram is position at the southeast quadrant Following an argu-ment muh like that in Brok and Starrett (2003) it an be shown (undermodest regularity onditions so that the Hamiltonian is onavo-onvex in
T ) that there are two value funtions, all them, Vmitigate (T ) and Vadapt (T ),and a �Skiba� point Ts ∈

(

T̄1, T̄3

)suh that Vmitigate (Ts) = Vadapt (Ts) and for
T0 < Ts, it is optimal to follow the ostate/state equations assoiated with
Vmitigate (T ) and onverge to T̄1, while for T0 > Ts it is optimal to followthe ostate/state equations assoiated with Vadapt (T ) and onverge to T̄3.In Figure 1 we present this situation for an appropriate hoie of funtionalforms and parameters.21 Besides the solution path the �gure also plots theisoline's both with and without ie line damages. Without ie line dam-ages we have the ase when the λ̇T -isoline is a linear dereasing funtionof T implying that we get a unique global saddle point at the rossing ofthe λ̇T = 0,Ṫ = 0 isolines denoted by T̄n. For the ase with ie line dam-ages on the other hand, we get the urved N-shaped λ̇T , isoline giving us a�Skiba� point Ts lying just between the unstable spiral T̄2 and the loal sad-dle point T̄3. Hene, for low initial T0 < T̄1, it will be optimal to levy a lowinitial arbon tax even though there is a polar ie ap threat (but it is notdisontinuous as in Oppenheimer and his oauthors' work) and then grad-ually inreasing the arbon tax along a gradualist poliy ramp. However,if
T0 ∈

(

T̄1, Ts

) it is optimal to tax arbon higher at T0 and let the tax gradu-ally fall. But if initial temperature is large enough the ie aps are essentiallyalready trashed and the optimal thing to do is to tax arbon initially quitemodestly but along an inreasing shedule through time to deal with the20The eigenvalues of J are given by 1

2

(

ρ ±
√

∆
), where ∆ = ρ2 +

4
[(

a1 + D
′′

2

(

T̄
)

)

cT h∗′ + bT (bT + ρ)
]

. When a1 + D
′′

2

(

T̄
)

> 0 then ∆ < 0 and we havetwo omplex eigenvalues with postive real parts whih implies an unstable spiral.21The assumed funtional forms, parameters and alulations used in �gure 1 are pro-vided in appendix A. 15
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T̄2T̄1 T̄3Ts T̄nFigure 1: Phase diagram for the system (35)-(36).rising marginal damages due to temperature rise. Figure 1 thus shows howthe qualitative piture hanges ompletely when an appropriate shape for ieline damage funtion is onsidered. In partiular, the area T ∈ (T̄1, Ts) is ofinterest sine, if ie line damages go unaounted for, the optimal strategywill be levy a low arbon tax whih eventually will raise temperature to T̄n,while in a model with ie line damages inluded the exat opposite will betrue implying a derease in temperature to T̄1.It is important to note that this stationary model is not rih enoughto apture the eventual rather sharp inrease along the �gradualist� poliyramp of Nordhaus (2007, 2010) beause in Nordhaus's ase the Business asUsual (BAU) emissions path would be growing beause of eonomi growth.Thus the damages from temperature rise alone, growing quadratially as thequantity of emissions grows, would lead to the gradualist path of arbontaxes �taking� o� in the future. However, this simple stationary model doesexpose the �new� behavior of a higher initial arbon tax for T0 ∈
(

T̄1, Ts

).Our runs of the DICE model in setion 5 below exhibit a sharply higherarbon tax at the beginning due to the �extra� ie line damages added toNordhaus's damages.2222Note that Nordhaus does inlude damages from ie melt, but the limate model abovewith moving ie line adds another omponent of ie melt that has a delining marginaldamage funtion.
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4 Spatial Energy Balane Integrated AssessmentModelsIn this setion we inorporate the framework of the energy balane modelsdeveloped above into a framework similar to well established integrated as-sessment models (IAMs) suh as the DICE/RICE models proposed by Nord-haus. We use notation lose to that of Nordhaus (2010) for the DICE/RICEpart of the model. Consider the ontinuous time spatial analog of Nordhaus'sequations (2007 Appendix 1 or 2010, A.1-A.20) where we have made somehanges to be onsistent with our notation and have suppressed (x, t) argu-ments to ease typing, unless (x, t) is needed for larity,
W =

∫ ∞

0
e−ρt

∫ 1

0
φ (x)U (c, L) dxdt , U (c, L) = Lu (c) (39)where L is labour input at at latitude x and time t,, u (c) is utility and

c = C/L where C is aggregate onsumption at (x, t), and φ (x) is a Negishiweight funtion.23 Furthermore,
Yn = C +

dK

dt
+ δK (40)

Yn = Ω (1 − Λ)Y, Y = AF (K,L) (41)where, Yn : output of goods and servies at latitude x and time t, net ofabatement and damages, Ω (T (x, t)) : damage funtion (limate damages asfration of output) as a funtion of temperature at (x, t), Λ = ψµθ2 : abate-ment ost funtion (abatement osts as fration of output),A : total fatorprodutivity, and F (K,L) is a standard neolassial prodution funtion,with K the apital stok at (x, t) and δ is the usual depreiation rate ofapital. We assume, as does Nordhaus (2010), full employment of the labor
L(x, t) in the prodution funtion F (K(x, t), L(x, t)).Aggregate emissions at time t are de�ned as:

E (t) =

∫ 1

0
σ (1 − µ)Y (x, t) dx (42)where σ : ratio of unontrolled industrial emissions to output (metri tonsarbon per output at a base year pries), µ : emissions-ontrol rate (frationof unontrolled emissions). Climate dynamis in the ontext of the ECBM23The maximization of objetive (39) with the �Negishi� φ (x)weighting funtion is a wayof omputing a Pareto Optimum ompetitive equilibrium alloation aross latitudes as inNordhaus's disrete time non-spatial formalization in Nordhaus (2010). For a presentationof the use of the Negishi weights in IAMs see Stanton (2010).
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developed in the previous setions are de�ned as:
∂T (x, t)

∂t
=

1

B
[QS (x)α (x, xs) + E (t) −A−BT (x, t) + (43)

D
∂

∂x

[

(

1 − x2
)

B
∂T (x, t)

∂x

]]

Ts = T (xs (t) , t) (44)Notie that we have replaed Nordhaus's limate equations (2010, equa-tions A.14-A.20) with the spatial limate dynamis, (43), (44). Maximizationof objetive (39) subjet to the onstraints above is a very ompliated anddi�ult optimal ontrol problem of the PDE (43) on an in�nite dimensionalspae x ∈ [0, 1]. We redue this problem to a muh simpler approximateproblem of the optimal ontrol of a �nite number of �modes� using the twomode approah desribed earlier.For the two mode approximation equations T (x, t) = T0 (t)+T2 (t)P2 (x)(43), (44). redue to the pair of ODEs.
dT0

dt
=

1

B

[

− (A+BT0) +

∫ 1

0
QS2 (x)α (x, xs (t)) dx+ E

]

, T0 (0) = T00(45)
dT2

dt
=

1

B
[− (1 + 6D)BT2+ (46)

5

∫ 1

0
QS2 (x)α (x, xs (t))P2 (x) dx

]

, T2 (0) = T02

T0 (t) + T2 (t)P2 (xs (t)) = Ts, Ts = −10oC (47)Before ontinuing notie that North's two mode approximation has re-dued a problem with a ontinuum of state variables indexed by x ∈ [0, 1]to a problem where the limate part has only two state variables. We anmake yet a further simpli�ation by assuming the utility funtion is linear,i.e. u (c) = c . This will allow us to write (39) as the MRAP problem:
W =

∫ ∞

0
e−ρt

∫ 1

0
φCdxdt =

∫ ∞

0
e−ρt

∫ 1

0
φ [AFΩ (1 − Λ) − (ρ+ δ)K] dxdt(48)Note that for the two mode approximation, the damage funtion shouldbe de�ned as:

Ω (T (x, t)) = Ω (T0 (t) + T2 (t)P2 (x)) (49)To ease on the notation we introdue the inner produt notation 〈f, g〉 =
∫ 1
0 f (x) g (x) dx. We may now write down the urrent value Hamiltonian forthe optimal ontrol problem (48) and show how we have drastially simpli�ed18



the problem by using a two mode approximation,24
H =

∫ 1

0
φ

[

AFΩ
(

1 − ψµθ2

)

− (ρ+ δ)K +
λ0

B
σ (1 − µ)AF

]

dx (50)
λ0

B
[〈QSα, 1〉 −A−BT0] +

λ2

B
[5 〈QSα,P2〉 − (1 + 6D)BT2]For the simpli�ed problem (48) the apital stok and the emissions on-trol rate K∗ (x, t) , µ∗ (x, t) are hosen to maximize H for eah (x, t), whihis a relatively simple problem. However there is one ompliation to be ad-dressed. The absorption funtion α (x, xs (t)) depends upon the ie line xs (t)where the ie line is given by a solution of (47), i.e.

xs (t) = P−1
+

(

Ts − T0 (t)

T2 (t)

) (51)Where the subsript �+� denotes the largest inverse funtion of the quadratifuntion P2 (x) := (1/2)
(

3x2 − 1
). Notie that the inverse funtion is uniqueand is the largest one on the set of latitudes [0, 1]. Equation (51) indues anonlinear dependene of equations (45) and (46) on through the absorptionfuntion , but no new state variables are introdued by this dependene. Anadditional dependene indued by equations (45) and (46) as well as equation((51) is on the damage funtion whih we parameterize as,

Ω = Ω
(

T0 (t) , T 2
2 (t)P 2

2 (x) ;xs (t) , x
) (52)The �rst term in (52) represents damages to output at latitude x asa funtion of average planetary temperature as in Nordhaus (2007,2010),the seond term is an attempt to apture extra damages due to limate�variane�, Note that the omponent P 2

2 (x) is larger at x = 0 and x = 1than it is at the �temperate� latitude x = (1/3)1/2 where P 2
2 (x) is zero. Thisis an admittedly rude attempt to apture the omponent of damages dueto �wetter plaes getting wetter� and �dryer plaes getting dryer� as well asdamages to arti latitudes ompared to temperate latitudes. But some ofthis dependene an be aptured also in the �x� term in the parameterization(52). Finally the impat on damages at latitude x due to shifts in the ieline is aptured by inlusion of the ie line in (52). This is a fairly �exibleparameterization of spatial e�ets (i.e. latitude spei� e�ets) that are notaptured in the reeived non-spatial formulations of integrated assessmentmodels.24The important thing to note about this Hamiltonian ompared to the Hamiltonianof the original problem (39) is this. The original problem would generate a Hamiltonianwith a ontinuum of ostate variables one for eah x ∈ [0, 1]. The two-mode approximationapproah developed ould be quite easily extended to an n-mode approximation approah.Sine however North argues that a two mode approximation is quite good, we ontinuewith a two mode approximation here. 19



4.1 Optimal mitigation and loation spei� poliy ramp ina spatial limate modelLet us �rst illustrate optimal mitigation using our two mode simpli�ationof our original �in�nite mode� problem with linear utility by onsidering aversion of the problem where the impat of poliy {µ (x, t)} on the loationof the ie line xs (t) is ignored. I.e. there is no ie line dependene of anyfuntions of the problem inluding the absorption funtion α (x, xs (t)).Inthis simpli�ed ase the albedo funtion depends only upon x and thus theterms 〈QSα, 1〉 , 〈QSα,P2〉 do not depend upon T0 (t) , T2 (t) in (45) and (46).Hene the two ostate ODEs are also simple,
dλ0

dt
= (ρ+ 1)λ0 −

∂H

∂T0
= (ρ+ 1)λ0 −

∫ 1

0
φAF (1 − Λ)

∂Ω

∂T0
dx (53)

dλ2

dt
= (ρ+ 1 + 6D)λ2 −

∂H

∂T2
= (54)

(ρ+ 1 + 6D)λ2 −

∫ 1

0
φAF (1 − Λ)

∂Ω

∂T2
dxWang and Stone (1980) argue that one an even get a fairly good approx-imation of T2 by exploiting how fast mode 2 onverges relative to mode zeroin equation (46) as ompared to (45). Hene we approximate by assumingthat T2 has already onverged to:

T2 =
5 〈QSα,P2〉

(1 + 6D)B
(55)for eah T (t).25 The Hamiltonian for the ase where and the absorptionfuntion is onstant is26

H =

∫ 1

0

[

φ (AFΩ (1 − ψµ) − (ρ+ δ)K) +
λ0

B
σ (1 − µ)AF

]

dx (56)
+
λ0

B
[Qα−A−BT0] (57)In this ase we obtain the following swithing deision rule for µ∗ (x, t)

µ∗ (x, t)







= 0
∈ [0, 1]

= 1







for − λ0 (t)







<
=
>







φ (x)ψB

σ (x)
Ω (58)

Ω = Ω
(

T0 (t) , (T2P2 (x))2 , x
) (59)

λ0 (t) =

∫ ∞

s=t
e−(ρ+1)(s−t)

[
∫ 1

0
AFΩ (1 − ψµ∗)

∂Ω

∂T0
dx

]

ds (60)25Note that in the ase where the absorption funtion does not depend upon xs (t) thatthe RHS of (55) is onstant.26Note that with a onstant absorbtion funtion, 〈QSα, 1〉 = 〈Q (1 + S2P2 (x)) α, 1〉 =
〈Qα + QS2αP2 (x) , 1〉 = 〈Qα, 1〉 = Qα, sine 〈QS2αP2 (x) , 1〉 = 0.20



Suppose some type of institution wanted to implement this soial opti-mum. One way to do it would be to impose a tax τ (λ) = −λ0(t)
B on emissionswhen individual agents solve the stati problems

max
{µ∈[0,1],K≥0}

{AFΩ (1 − ψµ) − (ρ+ δ)K − τ (λ) σ (1 − µ)AF} (61)We see right away that the �rst order neessary onditions for the prob-lem (61) are the same with those resulting from the Hamiltonian funtion(56). Hene if F (K,L) is onave inreasing in (K,L) whih we assume asusual in eonomis, then setting τ (λ) = −λ0(t)
B implements the soial op-timum. Note that the soially optimal emissions tax is uniform aross allloations as one would expet from Nordhaus (2007, 2010).The reader might ask at this point: What substantive di�erene doesthe spatial limate model oupled to the eonomi model add that is notalready aptured by non-spatial limate models? There are several importantdi�erenes regarding poliy impliations.The emission redution poliy ramp µ∗ (x, t) , is loation spei� andditates µ∗ (x, t) = 1 for all (x, t) where the relative �Negishi� weight φ (x)on welfare at that loation is small (reall that ∫ 1

0 φ (x) dx = 1 by normal-ization). For example, if a Rawlsian soial objetive is imposed, as men-tioned in the introdution, where the soial welfare of the worst o� lati-tude, all it x0, is maximized, then φ (x) = 0 for all latitudes di�erent then
x0. Hene all latitudes other than x0 would be immediately ordered to re-due their emissions to zero. Consider a more plausible senario. Assumethat Ω = Ω

(

T0 (t) , (T2P2 (x))2 , x
)

= Ω
(

T0 (t) , (T2P2 (x))2
) is dereasingin both arguments. This rudely aptures the idea that damages inreaseat eah latitude as average planetary temperature, T0 (t) inreases and as ameasure of loal limate �variane� (T2P2 (x))2 inreases. Let R denote a setof �at risk latitudes� with low values of Ω

(

T0 (t) , (T2P2 (x))2
), i.e. with highvalues of the arguments. The set R is a rude attempt to apture latitudesthat would be relatively most damaged by limate hange. A more plausibletype of �Rawlsian� objetive would be to solve the soial problem above butwith φ (x) > 0, x ∈ R, φ (x) = 0, x /∈ R . We see right away that this soialproblem would require all x's not in R to redue all emissions immediately.In general we have,

µ∗ (x, t) = 1, for − λ0 (t) >
φ (x)ψB

σ (x)
Ω (62)and vie versa. This makes good eonomi sense. The marginal soial burdenon the planet as a whole of a unit of emissions at date t, no matter fromwhih x it emanates is, −λ0 (t). Loations x where the �Negishi� weighton the loation is small, where emissions per unit of output are relativelylarge (relatively large σ (x)), and that are already relatively heavily damaged21



(Ω(T0 (t) , (T2P2 (x))2 , x
) is high ) are ordered to stop emitting. Thus ourmodeling allows plausible spei�ations of the eonomi justie argumentstemming from geography to shape poliy rules.Furthermore, we an use this framework to extend our results to thepresene of an ie line with an absorption funtion that hanges at the ieline. This is a more realisti model whih introdues ie line damages andwhih we develop in the ontext of a DICE/RICE-type integrated assessmentmodel4.2 Optimal mitigation in a spatial IAM-type limate modelWe introdue now as the absorption funtion the version proposed in North(North (1975a)) where

α (x, xs) = 1 − α (x) =

{

α1 = 0.38 x > xs

α0 = 0.68 x < xs
(63)where α (x) is the albedo. With this absorption funtion the dynamis T0 (t)in (45) and the T2 approximation in (55) beome respetively

dT0

dt
=

1

B

[

− (A+BT0) +Q (α0 − α1)

∫ x=xs(t)

x=0
(1 + S2P2 (x)) dx+ E +Qα1

](64)
T2 =

1

(1 + 6D)B

[

5Q (α0 − α1)

∫ x=xs(t)

x=0
(1 + S2P2 (x))P2 (x) dx+Qα1S2

](65)where the equation for the ie line is, using (51):
xs (t) =

[

2

3

Ts − T0 (t)

T2
+

1

3

]
1

2 (66)The objetive (39) and the onstraints (63)-(66) determine optimal mit-igation over time and latitude. The disontinuous absorption funtion anreate a strong nonlinearity where a small hange in T0 an ause a largehange in damages at some latitudes. This nonlinearity makes however dif-�ult to proeed with analytial solutions. To obtain a qualitative idea ofimpat of the nonlinearity due to the absorption funtion and the ie linewe use the limate parametrization used by North (1975a) (α0 = 0.68, α1 =
0.38, A = 201.4, B = 1.45, S2 = −0.483, Ts = −10, Q = 334.4). The heattransport oe�ient D is found to be approximately 0.2214 by alibratingthe ie line funtion to the urrent ie line estimate (xs = 0.95).2727The alibration proedure is explained in detail by North (1975b) p.2035-2037.22



The system (64)-(66) is highly non-linear and an be simpli�ed by deriv-ing a polynomial approximation of xs as a funtion of T0(t). We proeed inthe following way. If we substitute xs (t) from (66) into (65), then T2 resultsas a �xed point of (65). We solve numerially the �xed point problem (65)for values of T0 ∈
[

−T̄0, T̄0

],obtaining the solution T̂2(T0). Substituting thisbak into equation (66) gives us the x̂s(T̂2(T0), T0) whih is then used to �tusing least squares, a quadrati urve on (T0, x̂s). Thus x̂s is approximatedby a onvex urve x̂s = ζ0 + ζ1T0 + ζ2T
2
0 = ζ (T0) , (ζ0, ζ1, ζ2) > 0,.28 Makinguse of this approximation the system (64)-(66) an thus be written as:

dT0

dt
=

1

B
[−(A+BT0) +Q(α0 − α1)θ(T0) + E +Qα1] (68)where θ(T0) :=

[

x̂s +
S2

2
(x̂3

s − x̂s)

] with x̂s := ζ0 + ζ1T0 + ζ2T
2
0The optimization problem an also be further be simpli�ed, without loosingthe major points of our arguments, by assuming onstantlabor fore normalized at L = 1, no tehnial hange, and a Cobb-Douglasprodution funtion Y = Kβ, 0 < β < 1. The Hamiltonian an thus bewritten as:

H =

∫ 1

0

[

φKβΩ(T0)
(

1 − ψµ2
)

− (ρ+ δ)K +
λ0

B
σ (1 − µ)Kβ

]

dx (69)
+
λ0

B
[−A−BT0 +Q(α0 − α1)θ(T0) +Qα1]Note that the funtions under the integral do not expliitly depend on xexept φ (x) and possibly ψ (x) if abatement osts are site spei�. Assumethat ψ (x) = ψ. Then sine ∫ 1

0 φ (x) dx = 1, the optimal µ and K will bede�ned as:
µ∗ = −

λ0σ

2BψΩ(T0)
(70)

K∗ =

(

ρ+ δ

β

)
1

β−1
[

Ω(T0)
(

1 − ψµ∗2
)

−
λ0

B
σ (1 − µ∗)

]
−1

β−1 (71)and the anonial system is:
dT0

dt
=
[

−A−BT0 +Q(α0 − α1)θ(T0) + σ(1 − µ∗)K∗β
] (72)

dλ0

dt
=

(

ρ+ 1 −
Q

B
(α0 − α1)θ

′(T0)

)

λ0 −
[

K∗βΩ′(T0)(1 − ψµ∗2)
] (73)28The estimated quadrati funtion was

x̂s = 0.7126 + 0.0098T0 + 0.0003T
2
0 , R

2 = 0.99 (67)All oe�ients are statistially signi�ant at 1% level.23



To proeed further we need a more detailed spei�ation for the damagefuntion, whih as explained above should ontain a 'temperature ompo-nent' denoted by D1 (T0) and an 'ie line omponent', denoted by D2 (T0) .We speify the damage funtion in the following way.Lost output from temperature indued damages is: Y − Y
1+D1(T0)

=
Y D1(T0)
1+D1(T0) := Y d1 (T0)Lost output from ie line moving towards the poles written as a funtionof T0 is: Y − Y

1+D2(T0)
= Y D2(T0)

1+D2(T0) := Y d2 (T0)The sum of lost output from both soures is: LostY = Y d1 (T0) +
Y d2 (T0) .Thus net output available for onsumption and mitigation is: Y−LostY =
(1 − d1 (T0) − d2 (T0))Y.If we de�ne Ωi (T0) = 1

1+Di(T0) , i = 1, 2, then the term (1 − d1 (T0) − d2 (T0))an be written as the damage funtion Ω of the system (70)-(73) in the form
Ω(T0) = Ω1 (T0) + Ω2 (T0) − 1 (74)As the global warming problem onerns damages resulting from tempera-ture inreases, rather than dereases, we restrit the state spae to inludeonly temperatures T0 > 15◦C i.e. in the viinity of the present averageglobal temperature level.29 In the spatial model used in this setion thistemperature level is found by setting E = 0 and solving (68), whih gives us

T0 ≈ 15.27. Hene, 15◦C an thus be thought of as a rough ballpark esti-mate of the preindustrial global temperature average. Damages are assumedto start at 15◦C and we will thus write our normalized damage funtion as
Ω(T0 − 15). Further we will use the same funtional forms for the damagefuntions as used in setion 3.30The energy balane spatial limate model that we presented in this se-tion as the result of the onepts developed in the earlier part of the paper,has many similarities to the traditional IAMs but also two potentially im-portant di�erenes. The �rst is that the disontinuous absorption funtionand the ie line introdue a nonlinear term in the temperature dynamis,the seond is that ie line damages are inluded in addition to temperaturedamages. The question of whether these di�erenes imply signi�ant devia-tions of the models' preditions, annot be answered analytially due to thehigh omplexity of the models. So we are resorting to simulations.Figure 2 shows the results for the spatial limate model we have presentin this setion. As in setion 3 this model also gives us 3 andidate optimal29During the development of many energy balane models in the 1960's and 70's themain onern was usually not that of global warming but rather that of global oolingthat ould result due to a slight derease in the solar onstant.30The parameters estimates are taken to be ρ = 0.02, a1 = 0.09, a2 = 0.5, Ȳ = 1, ϕ =
0.1, σ = 0.001 and the temperature and ie line omponents are D1(T0) = a1T

2
0 and

D2(T0) = a2e−2T0T 2
0 . 24
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T̄03T̄02T̄01 T̄n TsFigure 2: Phase diagram for the system (72)-(73).steady states T̄01 < T̄02 < T̄03 where the largest and the smallest ones aresaddles while the middle one is an unstable spiral.31 Between the unstablespiral T̄2 and the saddle T̄3 we have a Skiba point T̄s similar to that ofsetion 3.32 Hene, for low initial temperatures T00 < T̄1 a low but graduallyinreasing arbon tax is optimal, while for T00 < Ts we get the ase where itis optimal to levy a high arbon tax at T00 and then gradually derease it.Further, the �gure also depits the ase when ie line damages are omitted
T̄n. As opposed to setion 3 both of the isoline's are now a�eted and inorder to to keep the �gure from getting too messy we have hosen only to plotthe single equilibrium at the rossing of these isoline's, whih is denoted bythe blak dot at T̄n of �gure 2. The qualitative behavior is however the sameas in setion 3, i.e. the no ieline damage equilibrium is a saddle having apositive slope for the Ṫ -isoline and a negative slope for the λ̇-isoline.31The orresponding eigenvalues are approximated numerially as e01 =
[−0.3974, 0.4174], e02 = [0.0100 ± 0.2045i] and e03 = [−0.1946, 0.2146].32Greiner, Grüne and Semmler (2009) �nd multiple equilibria in a zero-dimensionalEBM, where albedo is modeled by a ontinuous S-shaped funtion of temperature. Thederived multiple-equilibria and Skiba planes, however, only apply for �xed levels of abate-ment i.e. there is just a single ontrol variable (onsumption). If however, the soialplanner an ontrol both onsumption and abatement then there exists only a singlestable saddle. Our approah apart from expliitly addressing the more appropriate one-dimensional model also di�er in the sense that we obtain multiple equilibria and Skibapoints when ontrolling both onsumption and abatement.25



5 DICE model results with ie line damagesBoth the relative simple model of setion 3 and the more omplex model ofsetion 4 strongly suggest that the impliations of expliitly modeling ie linedamages is to all for strong mitigation now. In order to further demonstratethat this result is robust to the hoie of model we now turn to the DICEmodel. The purpose of this exerise is to show how the introdution of ie linedamages into the damage funtion, along the lines suggested by the EBCMswill a�et the optimal emission poliy implied by DICE the most well know ofthe IAMs. The DICE model assumes that all damages to the eonomy evolveaording to the quadrati equation (A.5) of Nordhaus (2007). This equationhas been alibrated to a 2.5 degree warming based upon an aggregate ofimpat studies from a variety of di�erent soures.33 In order to separateout the ie line omponent from the total amount of damages we follow theproedure shown in setion 4.2. We thus simply replae (A.5) with equation(74) from this setion. Hene, we have two separate damage omponents
D1(T ) andD2(T ) that an be alibrated independently aording to di�erentimpat assessments. Nordhaus (2007) �nds the aggregate impat of a 2.5degree warming to be roughly 2% of GDP. Sine, it is not possible to bakout exatly how muh of this 2% fall in GDP from a 2.5 degree warmingis due to ie line spei� damages, we simply make a rude assumptionthat approximately 50% of these damages are attributable to the ie lineomponent D2(T ).34 Next, we make the following assumptions regardingthe shapes of the temperature and ie line spei� omponents, i.e. weset D1(T ) = a1T

5 and D2(T ) = a2e
−2TT 2. In a manner onsistent withNordhaus (2007) we then proeed by alibrating the parameters a1 and a2so that D1(2.5) = 0.01 and D2(2.5) = 0.01. In this way our new damagefuntion produes an equivalent amount of damage at a 2.5 degree warmingas in the original model but will di�er for all other temperature levels. Thisnew damage funtion thus has the property that the temperature omponent,having a larger exponent than the original quadrati funtion, punishes GDPto muh larger extent when temperature levels start to rise above 3 degrees.When temperature levels on the other hand are lower, the damages from theie line are the ones that dominate.35 Figure 3 plots the optimal emissionontrol rate the DICE model when ie line damages are aounted for. Asan be seen from this graph the separation of di�erent damage struturesgives us a U-shaped poliy where it is mitigate harder initially as opposed33See Nordhaus (2007) aompanying notes (p.23-25).34On page 24 of the aompanying notes of the DICE 2007 model there is an impatassessment by region and impat type. These are then weighted based on GDP estimatesfor 2105. As these weights are not provided it is thus not possible to bak out a spei�region or impat type.35See Akerman et. al. (2003) for a disussion regarding di�erent values for theexponent of the damage funtion used in DICE.26
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Figure 3: Optimal emission ontrol rate with and without ie line damages.to the normal gradualist poliy. Although, these results are spei� to ourassumptions regarding the shape of the assumed damage funtion for the ieline as well as the temperature omponent, it still exempli�es the sensitivityof the model to strutural hanges in the damage funtion and the impatof inorporating insights from energy balane models..6 Summary, Conlusions, and Suggestions for Fu-ture ResearhIn this paper we introdue the eonomis profession to spatial Energy Bal-ane Climate Models (EBCM's) and show how to ouple them to eonomimodels and still obtain analytial results of interest to eonomists and poliymakers. While we believe this ontribution is of importane in its own right,we also show how introdution of spatial onsiderations leads to new waysof looking at limate poliy.In partiular by aounting for an endogenous ie line and the assoiatedie line damages, and a disontinuous albedo we show that due to non-lineraities even simple eonomi-EBCMs generated multiple steady statesand poliy ramps whih do not in general follow the `gradualist' preditions.These results arry over to more omplex models where the eonomi modulehas an IAM struture. The interesting issue from the emergene of multiplesteady states, is that when endogenous ie line and disontinuous albedoare ignored, as in traditional IAMs, the poliy presription of these models27



ould be the opposite of the poliy ditated by the eonomi-EBC models.Furthermore the spatial aspet of the EBCMs allows eonomi justie ar-gument assoiated with the spatial struture of limate hange damages toshape poliy rules. When we applied the damage funtion implied by theEBCMs and alibrated appropriately into the standard DICE model andrun the simulations the result was a U-shaped poliy ramp whih indiatesan important deviation from the gradualist poliy ramp derived from thestandard DICE model. Thus a rapid mitigation poliy an be justi�ed onthe new insights obtained by oupling the eonomy with the EBCMs.We onsider this paper as a �rst attempt to bring together EBCMs andeonomi models and to show how these models provide new insights whihhave not been obtained by the traditional IAMs, and furthermore that thesenew insights ould be important for poliy design. Being a �rst attemptalso means that there are many areas for future researh. These areas rangefrom making the eonomis more sophistiated by abandoning the simpli-fying assumption of linear utility; allowing for tehnial hange and knowl-edge spillovers aross latitudes; or introduing strategi interations amongregions,36 to extending the EBCMs. Future work that needs to be done re-garding EBCMs is extension to two dimensional spherial EBCM's beauseEarth is a sphere, not a line. Brok and Judd (2010) are attempting to makea dent in this problem. They frame the problem as a reursive dynami pro-gramming problem where the state vetor inludes a number of �spherialmodes� that are analogs of the modes in this paper as well as eonomi statevariables. Another possible extension ould be the onsideration of new pol-iy instruments. Emissions redution ats on the outgoing radiation in thesense that by reduing emissions the outgoing radiation inreases throughthe seond term of the right hand side of (2). Another kind of poliy ouldat on the �rst term of the right hand side of (2) in the sense of reduing theinoming radiation. This type of poliy might be assoiated with geoengi-neering options. Finally a poliy whih ats on the damage funtion in thesense of reduing damages for any given level of temperature and radiationbalane might be assoiated with adaptations options. Uni�ed eonomi-EBCMs might be a useful vehile for analyzing the struture and the tradeo�s among these di�erent poliy options.
36These extensions will undoubtedly inrease the omplexity and the omputationalneeds for solving the eonomi-EBCMs. 28



Appendix 1: The two mode solutionIn this appendix we show how to derive the two mode solution (8)-(16).We start with the basi PDE
∂I (x, t)

∂t
= QS (x, t)α (x, xs (t))−[I (x, t) − h (x, t)]+D

∂

∂x

[

(

1 − x2
) ∂I (x.t)

∂x

](75)The two mode solution is de�ned as:
Î (x, t) = I0 (t) + I2 (t)P2 (x) , P2 (x) =

(

3x2 − 1
)

2
(76)then

∂I (x, t)

∂t
=
dI0 (t)

dt
+
dI2 (t)

dt
P2 (x) (77)

∂I (x, t)

∂x
= I2 (t)

dP2 (x)

dx
= I2 (t) 3x (78)Substitute the above derivatives into (75) to obtain:

dI0 (t)

dt
+
dI2 (t)

dt
P2 (x) = QS (x, t)α (x, xs (t))− (79)

[I0 (t) + I2 (t)P2 (x) − h (x, t)] +D
∂

∂x

[

(

1 − x2
)

I2 (t)
∂P2 (x)

∂x

]

, or
dI0 (t)

dt
+
dI2 (t)

dt
P2 (x) = QS (x, t)α (x, xs (t))− (80)

I0 (t) − I2 (t)P2 (x) + h (x, t) − 6DI2 (t)P2 (x)Use:
∫ 1

0
Pn (x)Pm (x) dx = 〈Pn (x) , Pm (x)〉 =

δnm

2n+ 1
(81)

δnm = 0 for n 6= m, δnm = 1 for n = 1and note that P0 (x) = 1, P2 (x) =
(3x2−1)

2Multiply (80) by P0 (x) and integrate from 1, 0 to obtain
dI0 (t)

dt
+
dI2 (t)

dt
〈P0 (x) , P2 (x)〉 =

∫ 1

0
QS (x, t)α (x, xs (t))P0 (x) dx−(82)

I0 (t) − I2 (t) 〈P0 (x) , P2 (x)〉 +

∫ 1

0
h (x, t) dx−

6DI2 (t) 〈P0 (x) , P2 (x)〉 , or
dI0 (t)

dt
= −I0 (t) +

∫ 1

0
[QS (x, t)α (x, xs (t)) + h (x, t)] dx (83)29



Multiply (80) by P2 (x) and integrate from 1, 0 noting that ∫ 1
0 P2 (x) dx = 0,and 〈P2 (x) , P2 (x)〉 = 1

5 to obtain
dI0 (t)

dt

∫ 1

0
P2 (x) dx+

dI2 (t)

dt
〈P2 (x) , P2 (x)〉 = (84)

∫ 1

0
QS (x, t)α (x, xs (t))P2 (x) dx− (85)

I0 (t)

∫ 1

0
P2 (x) dx− I2 (t) 〈P2 (x) , P2 (x)〉− (86)

∫ 1

0
h (x, t)P2 (x) dx− 6DI2 (t) 〈P2 (x) , P2 (x)〉 , or

1

5

dI2 (t)

dt
=

[
∫ 1

0
QS (x, t)α (x, xs (t)) + h (x, t)

]

P2 (x) dx−

1

5
I2 (t) −

6

5
DI2 (t) , or

dI2 (t)

dt
= − (1 + 6D) I2 (t) + 5

∫ 1

0
[QS (x, t)α (x, xs (t)) + h (x, t)]P2 (x) dx(87)The ODEs (83) and (87) are the ODEs (9), (11) of the two mode solution(8)-(16). The solutions of these ODEs shown in (10) and (13) follow fromstandard methods.
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Appendix 2This setion drafts some of the more spei� assumptions on whih �gure 1is based. The prodution funtion in (32) is assumed to take the followingform:
f(k − k2, h+ φk2) = (k − k2)

α(h+ φk2))
β (88)with α > 0, β > 0. The solution to problem (32) is derived from the �rstorder onditions:

∂f

∂k
= α(k − k2)

α−1(h+ φk2))
β − (η + ρ) = 0 (89)

∂f

∂k2
= −α(k − k2)

α−1(h+ φk2))
β + βφ(k − k2)

α(h+ φk2))
β−1 = 0 (90)Solving the system (89) and (90) for k and k2 gives the solution to problem(32).

k∗2(h) =
1

φ

(

(η + ρ)

α

(

α

φβ

)1−α
)

1

α−1+β

−
h

φ

k∗(h) =
α

φβ
h+

(

1 +
α

β

)

k∗2(h)Plugging these values bak into (32) allows us to write π(h) as a linearfuntion of h:
π(h) = A+Bhwith
A :=

(

α

φβ

)α
(

(η + ρ)

α

(

α

φβ

)1−α
)

α+β

α−1+β

− (η + ρ)
(1 + φ)

φ

(

(η + ρ)

α

(

α

φβ

)1−α
)

1

α−1+β

B := −(η + ρ)

(

α

φβ
−

(1 + φ)

φ

)whih is inreasing in h given that α/β < (1 + φ). Assuming also that
D1(T ) = 0.5a1T

2,D2(T ) = a2 exp(−2T )T 2 and c(h) = chh
2, where a1, a2, ch >

0.37 Substituting this into (33) and using the �rst order ondition we anthus derive the anonial system:
dT

dt
= aT − bTT + cT

B + λT cT
2ch

, T (0) = T0 (91)
dλT

dt
= (ρ+ bT )λT + a1T − 2a2e

−2T (T − 1)T (92)37Note that these funtions have the properties desribed in setion 3.31



From (91) and (92) it is easy to on�rm the shape of the isolines depited in�gure 1. For the numerial alulations of the solution paths and the Skibapoint we used a numerial methods desribed in Grass (2008, 2010). Theparameter values used for the numerial alulations are given in the tablebelow:Parameter Value Desription
ρ 0.02 disount rate
α 0.3 marginal produtivity of apital
β 0.6 marginal produtivity of energy
η 0.1 depreiation rate of apital
φ 0.9 e�ieny parameter of lean energy
a1 0.09 damage parameter of D1(T )
a2 0.7 damage parameter of D1(T )
s 0 parameter of the srap value funtion
aT 0.8 parameter of temperature equation
bT 0.6 parameter of temperature equation
cT 0.85 parameter of temperature equationTable 1: The parameter values for �gure 1.
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