
The Beijer Institute  
of Ecological Economics

The Beijer Institute of Ecological Economics 
The Royal Swedish Academy of Sciences
Box 50005 SE-104 05 Stockholm Sweden
Phone: +46 8 673 95 00 Fax: +46 8 15 24 64 
E-mail: beijer@beijer.kva.se

Numerical computation of the optimal 
vector field in a fishery model

Dieter Grass. 2010.

DISCUSSION PAPER
Beijer Discussion Paper Series No. 224



Numerical computation of the optimal vector field in a

fishery model

D. Graß

The Beijer International Institute of Ecological Economics, The Royal Swedish Academy of

Sciences, Box 50005 10405, Stockholm, Sweden. E-mail: dieter.grass@tuwien.ac.at

Abstract

Many of the optimal control models analyzed in economics are formulated as
discounted infinite time horizon problems, where the occurring functions are
nonlinear as well in the states as in the controls. As a consequence solutions
can often only be found numerically. Moreover, the long run optimal solutions
are in the overwhelming cases limit sets like equilibria and/or limit cycles. Using
these “trivial” solutions a BVP approach together with a continuation technique
is used to calculate the parameter dependent dynamic structure of the optimal
vector field. We use a one-dimensional optimal control model of fishery to
exemplify the numerical techniques. But these methods, as will be shown, are
applicable to a much wider class of optimal control problems with any number
of state and control variables.

Keywords: Optimal vector field, BVP, Continuation, Multiple optimal
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1. Introduction

During the last decades optimal control models have successfully been ap-
plied in economics and/or ecology. Many of these models exhibit non-convexities
and featuring multi system parameter values. As a consequence analytical meth-
ods alone are not sufficient for a full analysis. Nonlinearities and non-convexities
often also give rise to the occurrence of multiple or history-dependent solutions.
Therefore a well adapted numerical framework is of need, allowing an efficient
handling of qualitatively different solutions.

The occurring phenomena are manifold. These range from history-dependence,
i.e., dependent on the initial value one converges to different attractors, and/or
multiplicity, where for specific points the decision maker is indifferent choosing
between different optimal solutions, converging to distinct long run optimal so-
lutions or even converging to the same attractor. This multitude of solution
behavior, corresponding to non-uniqueness or existence of different long run at-
tractors, is scattered over a wide variety of articles, where a few of them are
mentioned below.
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The literature at this point lacks a theoretical and well structured descrip-
tion of these different phenomena, which correspond to structural changes in
the optimal solution. Thus they can be further ascribed as bifurcations of
the optimal vector field. Developing a comprehensive bifurcation theory of the
optimal vector field is however done in Kiseleva and Wagener (2010) for the
one-dimensional shallow lake model. But this type of general framework is still
missing for two and higher dimensional systems.

Some remarks regarding the notation, classifying the phenomena of multi-
plicity and/or dependence on the initial values, should however be given. We
already mentioned that in this context not only a theoretical framework is miss-
ing, but also a standardized notation is lacking. For points exhibiting multiple
optimal solutions an often used term is that of a Skiba point, or as introduced
by myself in Grass et al. (2008) DNSS point, recognizing the individual con-
tributions of the authors Dechert, Nishimura, Skiba, and Sethi. But a general
definition is still missing and the use of an acronym becomes more and more
confusing since this phenomenon has already been described by authors years
before that of Sethi or Skiba, see Clark (1976). Therefore we will dismiss our
own terminology of DNSS points and instead adopt to the same terminology that
was introduced in Kiseleva and Wagener (2010). Even though this terminology
has also been criticized it turns out advantageous compared to unnecessarily
long and complicated acronyms.

Since bifurcations of the optimal vector field often correspond to global bi-
furcations of the canonical system derived from the underlying optimal control
problem, (see, e.g., Wagener, 2003, 2006), efficient numerical tools are necessary
for the calculations. Moreover the use of high-level illustrations and animations
are also of great help for the development of a bifurcation theory, since these
pictures provide the necessary intuition for the facts which then have to be
proved rigorously. The aim of this article is a well adapted numerical approach
derived from Pontryagin’s Maximum Principle yielding a BVP which is com-
bined with a continuation technique. A preliminary version of these numerical
tools are implemented as a MATLAB package OCMat, which can be downloaded
at http://orcos.tuwien.ac.at/research/ocmat_software.

To exemplify these numerical techniques we use a one state, one control
fishery model. This model is a simplified version of a three state optimal control
problem, formulated in Crépin (2007). But these numerical techniques can in
principle be applied to models with an arbitrary number of states, controls and
constraints. In fact the MATLAB package OCMat has already been successfully
applied to a number of different models, e.g., (Caulkins et al., 2005a, 2007,
2005b, 2008, 2010, 2009; Zeiler et al., 2010; Levy et al., 2006).

Subsequently we present a numerical technique for analyzing discounted
problems over an infinite time horizon, referred to as (DIP), of the following
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type

max
u(·)

∫ ∞

0

e−rt g(x(t), u(t)) dt (1)

s.t. ẋ(t) = f(x(t), u(t)), t ∈ [0, ∞) (2)

with x(0) = x0 (3)

c(x(t), u(t)) ≥ 0, t ∈ [0, ∞). (4)

with x(t) ∈ R
n, u(t) ∈ R

m and the state dynamics f : R
n+m → R

n, the
objective function g : Rn+m → R, and the mixed path constraints c : Rn+m →
R

l, are assumed to be two times continuously differentiable in their arguments.
Next we formulate assumptions which have to be proved analytically for a

concrete model, or if an exact proof is not possible one has to be aware that the
numerical results only provides extremals, i.e., candidates for optimal solutions.

Assumption 1. 1. There exists an optimal solution (x∗(·), u∗(·)) for every
x0 ∈ C ⊂ R

n, with C a compact set.

2. Every optimal solution (x∗(·), u∗(·)) converges to an equilibrium.

3. The constraints (4) satisfy the constraint qualification along an optimal
solution.

Next we state assumptions which can be made less restrictive

Assumption 2. 1. The control variable u appears nonlinearly either in g(x, u)
or f(x, u).

2. The optimal control values can be stated as explicit functions of the state
and costate variables, i.e., u∗(t) = u(x(t), λ(t)). For active mixed con-
straints the Lagrangian multipliers can explicitly stated as functions of the
state and costate variables, i.e., ψ(t) = ψ(x(t), λ(t)).

Definition 1. Let (x∗(·), u∗(·)) be a solution of model (DIP), then its limit set is
called a long run optimal solution, and an optimal solution with (x∗(·), u∗(·)) ≡
(x̂, û) is called an equilibrium solution.

2. A fishery model

The full fishery model in a coral reef presented in Crépin (2007) consists, at
time t, of the three states fish (x(t)), algae (a(t)), coral (c(t)), and the control
(u(t)) representing the effort of fishing. In our simplified version we will set the
number of algae and coral constant, i.e, a(·) ≡ a and c(·) ≡ c, yielding a one
state, one control optimal control problem.

The dynamics of fish is described by a logistic growth term (G), with a
carrying capacity depending linearly on the number of algae, yielding

G(t) := x(t)

(

1−
x(t)

a

)

.
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Additionally we have a term stemming from predation (P ) which is decreasing
with the number of corals, because of coral giving shelter to the fish. This term
can be described by

P (t) :=
1

(c+ τ )

x(t)2

1 + x(t)2
.

The stock of fishes is also reduced by fishing (u(t)x(t)), yielding the total fish
dynamics as

ẋ(t) = G(t)− P (t)− u(t)x(t)

= x(t)

(

1−
x(t)

a

)

−
1

(c+ τ )

x(t)2

1 + x(t)2
− u(t)x(t).

To formulate the economic part of the model we simply assume that fishing
yields positive gains from selling them at price p but also generates negative
(ecological) side effects. Thus we define the total utility as

U(t) := pu(t)x(t)− u(t)2.

Summing up the optimal control problem, which is subsequently referred to as
fishery model (FM), can be written as

max
u(·)

{
∫ ∞

0

e−rt
(

pu(t)x(t)− u(t)2
)

dt

}

(5)

s.t. ẋ(t) = x(t)

(

1−
x(t)

a

)

−
1

(c+ τ )

x(t)2

1 + x(t)2
− u(t)x(t) (6)

u(t) ≥ 0, for all t (7)

x(0) = x0 > 0. (8)

For the analysis of this model Pontryagin’s Maximum Principle is used, where
the details are carried out in the next section.

3. Necessary optimality conditions

Defining the Hamiltonian and Lagrangian (augmented Hamiltonian) of prob-
lem (FM) as

H(x, u, λ, λ0) := λ0
(

pux− u2
)

+ λ

(

x
(

1−
x

a

)

−
1

(c+ τ )

x2

1 + x2
− ux

)

(9)

L(x, u, λ, ψ, λ0) := H(x, u, λ, λ0) + ψu (10)

an optimal solution (x∗(·), u∗(·)) of (FM) has to satisfy the following necessary
optimality conditions. There exists a (piecewise) continuous function ψ(·) and a
(piecewise) differentiable function λ(·) with (λ(t), λ0) 6= (0, 0), t ≥ 0, such that
at every time point t, where u∗(·) is continuous

u∗(t) ∈ argmax
u≥0

H(x∗(t), u(t), λ(t), λ0) (11)
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and

λ̇(t) = rλ(t)−
∂L

∂x
(x∗(t), u∗(t), λ(t), ψ(t), λ0) (12)

with the transversality condition

lim
t→∞

e−rt λ(t) = 0. (13)

In Appendix A it is proved that the problem (FM) is normal and therefore λ0
can be set to one and is subsequently omitted. Since the Hamiltonian (9) is
strictly concave with respect to u the Hamiltonian maximizing condition (11)
can be reformulated as

∂L

∂u
(x∗(t), u∗(t), λ(t), ψ(t)) = 0 (14a)

ψ(t) ≥ 0 (14b)

ψ(t)u∗(t) = 0. (14c)

Moreover the strict concavity with respect to u implies the uniqueness of the
optimal control value. As a result u∗(·) is continuous and λ(·) is continuously
differentiable. Since the control constraint satisfies the constraint qualification
the Lagrangian multiplier ψ(·) is also continuous.

Analyzing (14a) in detail we find that the maximizer

u◦ = argmax
u≥0

H(x, u, λ)

can be derived from

∂H

∂u
= px− 2u− λx = 0 ⇔ u• =

x

2
(p− λ)

∂L

∂u
= px− 2u− λx+ ψ = 0

yielding

u◦ =

{

u• for u• > 0

0 for u• ≤ 0
(15)

ψ =

{

0 for u• > 0

−x(p− λ) for u• ≤ 0.
(16)

Summing up an optimal solution (x∗(·), u∗(·)) for the problem (FM) has to be
searched among the solutions (x(·), u(·)) of the so called canonical system given
by

ẋ(t) = x(t)

(

1−
x(t)

a

)

−
1

(c+ τ )

x(t)2

1 + x(t)2
− u◦(t)x(t) (17a)

λ̇(t) = λ(t)

(

r − 1 +
2x(t)

a
+

2x(t)

(c+ τ )(1 + x(t)2)2

)

− u◦(t) (17b)
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satisfying the boundary conditions

x(0) = x0 and lim
t→∞

e−rt λ(t) = 0.

From a numerical point of view the transversality condition (13) does not pro-
vide information to explicitly calculate solutions of the system (17a) and (17b).

But paths (x(·), λ(·)) converging to an equilibrium (x̂, λ̂) trivially satisfy the
transversality condition (13). For the model (FM) it is proved in Appendix B
that the stable paths are already all candidates for an optimal solution.

Thus we restated the problem of finding candidates for optimal paths, into
the problem of finding the equilibria (x̂, λ̂) of the ODEs (17a) and (17b), and
calculating the corresponding stable paths. In case of multiple equilibria and
multiple solutions we have to compare the corresponding value of the objective
function and choose the maximizer.

Practical remark. It may not always be possible to prove the (global) optimality
of the numerically calculated solutions. In these cases one can try to prove local
optimality using second order necessary optimality conditions. Otherwise one
has to keep in mind that in general, without further analysis, only extremals,
i.e., candidates for an optimal solution are identified.

4. Calculating stable paths

To keep the notation compact and to avoid an overloaded usage of indices
we set

y =

(

y1

y2

)

:=

(

x
λ

)

, and µ := (r, p, c, a, τ ).

Moreover we remind the reader that the canonical system includes the maxi-
mized control value u◦(t) and in the constrained case the Lagrangian multiplier
ψ(t), where using Assumption 2, both of them can be expressed as terms of
state(s) and costate(s), i.e.,

u◦(t) = u◦(x(t), λ(t)) and ψ(t) = ψ(x(t), λ(t)).

Substituting these expressions into the canonical system we can shortly write

ẏ(t) = g(y(t), µ)

or even shorter

ẏ(t) = g(y(t)), (18)

whenever the parameter values µ can be assumed as constant.
Next we assume that for a specific set of parameter values µ the system (18)

exhibits a saddle ŷ. Thus the two eigenvalues ξ1,2 of the Jacobian matrix J(ŷ)
exhibit opposite signs, where we assume ξ1 < 0 < ξ2.

For a given initial state y10 we then have to find a solution path y(·) of (18)
satisfying

y1(0) = y10 (19)
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and

lim
t→∞

y(t) = ŷ. (20)

In the terminology of Appendix C this determines a (two-point) boundary value
problem (TBVP), with T = ∞. To solve this problem numerically we have to
reformulate the asymptotic condition (20), translating the convergence property
into some “finite” setting.

Different approaches are possible where we present the simplest one. By
definition (see (C.5)) the solution path y(·) satisfying (20) lies in the stable
manifold of ŷ and reaches therefore the local stable manifold in some finite
time.1 The stable eigenspace of ŷ is given by

Es(ŷ) = κν ∈ R
2, κ ∈ R (21)

with ν being the eigenvector corresponding to the negative eigenvalue ξ1.
The manifold theorem (see Appendix C Th. 1) states that the stable eigenspace

(21) is tangent to the local stable manifold at ŷ. Therefore the condition (20)
can approximately be replaced by

(y(T )− ŷ) ∈ Es(ŷ), (22)

for T large enough. Moreover the condition (22) is equivalent to the equation

F ′(y(T )− ŷ) = 0, with F := ν⊥. (23)

In the general case the matrix F is given by a basis spanning the orthogonal
complement to the stable eigenspace. Its actual computation is described in
Th. 3 of Appendix C.

4.1. The boundary value problem

Summing up the problem of finding a stable path satisfying (20) can (ap-
proximatively) be calculated by solving (23).2 Additionally we normalize the
time interval [0, T ] to [0, 1], which is helpful in case of different arcs with firstly
unknown switching times (see, e.g., Sect. 5). Therefore a solution y(·) starting
at y10 and converging to ŷ can numerically be computed by fixing end time T
(large enough) and solving the BVP

ẏ(t) = Tg(y(t)), t ∈ [0, 1] (24a)

y1(0) = y10 (24b)

F ′(y(1)− ŷ) = 0, (24c)

where (24c) is called the asymptotic transversality condition. The appearance
of T in (24a) is due to the normalization of the time interval.

1The reader should make herself aware that the stable manifold and paths on the stable
manifold are two distinct objects. For the two-dimensional case this fact is hidden, since the
stable manifold and the solution path coincide in the phase portrait.

2To compute an unstable path the same approach can be used by reversing time.
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Practical remark. The advantage of truncating the time interval to a fixed value
is the linearity of the boundary condition (24c). But the apparent draw back
is the freedom in choosing the truncation time T . Thus one has to take care
that during the computations the chosen time T is large enough, i.e, the distance
‖y(T )−ŷ‖ keeps sufficiently small. If necessary the end time T could be adapted
using continuation. Alternatively the end time T could be considered as a free
parameter. Then a further equation has to be added, e.g., ‖y(T )− ŷ‖ = ε, with
ε fixed.

Practical remark. Another possibility is a transformation of the time interval
[0,∞) to the interval [0, 1] using, e.g.

s =
1

1 + t
.

For a different transformation see, e.g., Kitzhofer et al. (2009). But in all these
approaches, where the infinite time interval is transformed into a finite time
interval, a singularity is introduced and therefore the used BVP solver needs to
handle singular BVPs.

4.2. Initializing the boundary value problem

Next we have to answer the question of how to solve the BVP (24) explic-
itly? Every BVP algorithm implemented in a specific solver needs as an input
argument an initial (approximative) solution. Depending on the problem this
initial solution can be a rather rough approximation, or has to be very close to
the sought for solution. Anyhow, continuation techniques allow us to continue a
solution once we have found at least one solution. Thus we search for a solution
we can easily get. But the simplest possible solution of the BVP (24) is the
equilibrium itself, provided we change the initial condition (24b) into

y1(0) = ŷ1. (25)

For this BVP the trivial path y(·) ≡ ŷ determines a solution and continuing
this trivial solution lets us find the solution we actually want to compute. This
strategy is theoretically founded, e.g., in Winkler (1985) or Krauskopf et al.
(2007).

After having formulated the main framework, for computing paths converg-
ing to an equilibrium, we now apply this method to problems derived from our
optimal control problem. Optimal control theory provides us then the different
boundary conditions we have to consider, when analyzing paths switching be-
tween active and inactive constraints, different paths starting at the same initial
state and converging to different equilibria, and so forth. These specifications
will be treated in the subsequent sections.

5. Case of a unique equilibrium

Returning to the interpretation of (18) as the canonical system of the optimal
control problem (FM) we have to distinguish between two cases, namely the case
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of the control value lying in the interior of the control region, i.e., c(y) > 0, and
the case of the control value lying at the boundary, i.e., c(y) = 0, (cf. (15)).
To differentiate between these two specifications of the canonical system, we
introduce the variables z and h for the (co)state variables and the dynamics of
the boundary system.

Thus the two representations of the canonical system are denoted as the
interior system

ẏ(t) = g(y(t)) (26)

and the boundary system

ż(t) = h(z(t)) with c(z(t)) = 0, (27)

satisfying the (mixed) constraint (4).
Let us assume that interior system (26) exhibits a (unique) saddle ŷ, where

ν is the eigenvector corresponding to the negative eigenvalue, and we want to
find the stable path starting at the initial value y1(0) = ζ. To validate that the
solution path satisfies the constraint (4) we define a tolerance ε > 0 and check
that a path y(·) satisfies

c(y(t)) ≥ ε, for all t. (28)

Using the results from the previous section the following BVP has to be solved

ẏ(t) = Tg(y(t)), t ∈ [0, 1] (29a)

y1(0) = ζ (29b)

F ′(y(1)− ŷ) = 0, F := ν⊥. (29c)

We use a simple continuation technique with a fixed step width

∆ :=
ζ − ŷ1

n
, n ∈ N

and continue the solution of (29), with changing initial condition (see Fig. 1)

y1(0) = ζj := ŷ1 + j∆, j = 0, . . . , n.

The solution path at step j is denoted as

y(j)(·).

During the continuation process (28) is checked. If at step k + 1 the constraint
(28) is violated (for reasons of simplicity we assume that the violation occurs
at the initial point, i.e., c(y(j)(0)) < ε), the step width is reduced and the k-th
solution is continued until it is violated again. Repeating this procedure we
finally find at some step N an (admissible) solution

y(N)(·), with c(y(N)(0)) ∈ [0, ε),
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lying near the boundary, where the control constraint becomes active.
To calculate the solution further on we have to distinguish between two arcs

of the solution path. The first arc with the control value at the boundary and
the second arc with the control value lying in the interior of the control region.
Thus we can set up an extended BVP with additional boundary conditions at
the switching point. Denoting the unknown switching time as Ts we state this
BVP as

ż(t) = Tsh(z(t)), t ∈ [0, 1] (30a)

ẏ(t) = (T − Ts)g(y(t)), t ∈ [0, 1] (30b)

z(1) = y(0) (30c)

c(y(0)) = 0 (30d)

z1(0) = ζ (30e)

F ′(y(1)− ŷ) = 0, F := ν⊥. (30f)

Note that we doubled the dimension of the ODEs to handle the switching be-
tween two arcs.3 The new condition (30c) reflects the continuity of the state and
costate at the switching point and (30d) is needed to determine the unknown
switching time Ts.

4

Remark 1 (Switching from the boundary to the interior control region). For
an arc with the control value lying at the boundary of the control region the
Lagrangian multiplier has to be positive. Therefore this condition has to be
checked during continuation. In case that this condition is violated the same
procedure yields an extended BVP, where condition (30d) is then replaced by
the condition5

ψ(z(1)) = 0. (31)

5.1. Initialization of (30)

To start the continuation for the extended system (30) we use the solution
path y(N)(·) by adding the trivial arc

z(t) = y(N)(0), t ∈ [0, 1] and Ts = 0.

This solution trivially satisfy the BVP (30) and can therefore be used as an
initial solution for the subsequent continuation steps (see Fig. 2).

3This is the usual procedure of transforming a multi-point BVP into a two-point BVP. For
a boundary value solver being able to handle multi-point problems this step has to be adapted
in an obvious way.

4In cases of a discontinuous control this condition has to be replaced by the continuity of
the Hamiltonian at the switching point.

5In cases, where the Lagrangian multiplier is discontinuous at the switching point this
condition has to be replaced by the continuity condition of the Hamiltonian.
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Figure 1 (Animation): The left figure depicts the continuation process in the
state-costate space, whereas the right figure shows it in the state-control space.
Starting at the “trivial” solution, i.e. the equilibrium solution a continuation
process using BVP (29) is used to compute the solution with initial condition
y10 = 4. For the actual computation the parameter values are set to a = 5 and
c = 0.5 and the end time is fixed at T = 500.
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Figure 2 (Animation): The left figure depicts the continuation process in the
state-costate space, whereas the right figure shows it in the state-control space.
Starting at the “trivial” solution, i.e., the equilibrium solution a continuation
process using BVP (29) is used to compute the solution with initial condition
y10 = 0.01. During this process a violation of the control constraint is detected
and therefore the BVP (30) is used for the further continuation steps. For the
actual computation the parameter values are set to a = 5 and c = 0.5 and the
end time is fixed at T = 500.
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6. Multiple equilibria

In many optimal control problems of type (DIP) the canonical system ex-
hibits multiple equilibria. Therefore another basic issue is the identification of
the optimal solution among different extremals. In case that multiple optimal
solutions exist, the main problem is to locate the so called indifference point(s).
These are points in the state space at which different paths yield the same objec-
tive value, i.e., each of these paths are equally optimal. For a detailed discussion
of such points see Grass et al. (2008) and Kiseleva and Wagener (2010).

Practical remark. In general the main focus is on saddles exhibiting a stable
manifold of the same dimension as the number of states. The reason is simply
that only for these saddles one can expect that the projection of the stable man-
ifold covers (the interesting region of) the state space. In the one-dimensional
case every saddle already satisfies this condition.

6.1. One superior solution

Let us assume that the canonical system (18) exhibits two saddles ŷ1 and
ŷ2 (with one-dimensional stable manifold). To determine if these equilibria are
both long run optimal solutions or if one is superior to the other we have to
compare the objective value of the stable paths converging to ŷ1 and ŷ2. Thus
we use the continuation algorithm presented in the previous section trying to
determine the paths with initial value y1(0) = ŷ11 and converging to ŷ2 and vice
versa for y1(0) = ŷ12 converging to ŷ1.

6 An example of such a case, where one
of the stable paths can be continued to the state value of the other equilibrium,
is depicted in Fig. 3.

Practical remark. The continuation process may fail for different reasons. First
of all there may exist an unstable node in between and one or both stable paths
emanate from this equilibrium. In that case the BVP solver may fail to find a
solution or the returned solution (for fixed T ) returns a solution with the end
point not near the equilibrium.

Secondly there may exist an intermediate unstable focus and one or both
stable paths may spiral out. In this case the fixed step continuation fails to find
a solution and aborts if the stable path starts bending back. This can be avoided
by using an adaptive continuation method. But since in the one-dimensional
case the back bended segment cannot be optimal at all it is not necessary to
follow this back bending (see Fig. 3).

6.2. Indifference point

Next we analyze the case where none of the stable paths can be continued to
the other equilibrium state but parts of the paths overlap in the projection to
the state space. In these cases we expect the existence of an indifference point

6In fact we can already stop the computation if one stable path can be continued to the
other equilibrium state. Since in that case the continued solution is superior to the equilibrium
solution at this point (cf. Grass et al., 2008, Prop. 3.23).
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Figure 3 (Animation): In the left figure the control is depicted during the con-
tinuation process and the corresponding objective value evaluated by the Hamil-
tonian is shown in the right figure. First the stable path is continued from the
left equilibrium in direction to the right equilibrium. The spiraling behavior of
this path is followed by using the adaptive continuation algorithm. Next the
stable path converging to the high equilibrium is computed. During the contin-
uation process two switching points are detected. Finally it can be seen that the
solution converging to the high equilibrium is superior and therefore the unique
long run optimal solution.
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xI , where it is equally optimal to converge either to ŷ1 or ŷ2 (see Fig. 4). The
decisive property is the equality of the objective value for the two solutions

y1(·), y2(·), with y11 = y12 = xI , y
2
1 6= y22 .

Since the objective value is given by the Hamiltonian (divided by the discount
rate) evaluated at the two (different) points y1(0) and y2(0), see, e.g., Michel
(1982), the last equality can be stated as a boundary condition

H(y1(0)) = H(y2(0)).

These properties allow us to formulate the BVP characterizing an indifference
point. Let ν1 and ν2 be the eigenvectors corresponding to the negative eigen-
values of the saddles ŷ1 and ŷ2 and let us choose the two maybe different fixed
truncation times T1 and T2 then the solutions starting at an indifference point
are characterized by the following BVP

ẏ1(t) = T1f1(y1(t)), t ∈ [0, 1] (32a)

ẏ2(t) = T2f2(y2(t)), t ∈ [0, 1] (32b)

y11(0) = y12(0) (32c)

H(y1(0)) = H(y2(0)) (32d)

F ′
1(y1(1)− ŷ1) = 0, F1 := ν⊥1 (32e)

F ′
2(y2(1)− ŷ2) = 0, F2 := ν⊥2 . (32f)

The two ODEs (32a) and (32b) denote the two different solutions.7 The condi-
tion (32c) states that both solutions have to start from the same initial state,
namely the sought for indifference point xI and (32d) formulates the equity in
their objective value. Finally (32e) and (32f) are the usual asymptotic transver-
sality conditions for the two solutions converging to the (different) equilibria ŷ1
and ŷ2. It is easy to check that the problem is well formulated, in the sense that
the number of equations equals the number of unknowns.

To determine an initial solution for the BVP (32) we can use the results from
the previous continuations, where we roughly determine the intersection point
of the Hamiltonian evaluated along the two paths. Then the solutions starting
at this approximated intersection point are calculated and can then be used as
an initial solution for (32).

Remark 2. We note that the path(s) y1(·) and/or y2(·) may be compounded
of different arcs (active/inactive constraints) which is not explicitly stated for
reasons of notational simplicity.

7Note that the ODEs (32a) and (32b) can consist of different arcs exhibiting active and
inactive control constraints.
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Figure 4 (Animation): This animation depicts the steps of locating an indiffer-
ence point. In the left figure the control is shown and in the right figure the
corresponding Hamiltonian value. In the first step the stable paths of both equi-
libria are continued in direction of the other equilibrium state. since both paths
are back bending the continuation is interrupted. The Hamiltonian intersect
and the intersection point is approximatively calculated (gray line). Then the
stable paths are computed starting at initial value given by this approximative
value. Finally using this approximative solution the BVP (32) is solved yielding
its exact location (red line).
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6.3. Threshold point

Beside the superiority of one of the equilibria or the existence of a threshold
point we may encounter that an unstable node ẑ lies between two saddles ŷi, i =
1, 2 and additionally it is a long run optimal solution, provided the initial state
is the equilibrium state y(0) = ẑ1. A necessary condition for this case is that
the stable paths do not overlap in the state space. Theory tells us that the
stable paths are tangential to the weak eigenvector νw, i.e., the eigenvector
corresponding to the lowest eigenvalue, near the unstable node. Thus we split
up each stable path into a (stable) part converging to the corresponding saddle
and an unstable part converging (for reversed time) to the unstable node and
being tangential to the weak eigenvector.

To set up the corresponding BVP we denote the stable paths as yi(·), i =
1, 2 and two unstable paths corresponding to the unstable node as zi(·), i =
1, 2. The unstable paths are assumed to be tangential to the weak eigenvector.
Moreover we fix the truncation times T1 and T2 choose some ε > 0 and introduce
the free time parameter values T and S. Then the BVP can be written as

ẏ1(t) = T1f(y1(t))), µ), t ∈ [0, 1] (33a)

ż1(t) = −Tf(z1(t))), µ), t ∈ [0, 1] (33b)

ẏ2(t) = T2g(y2(t)), µ), t ∈ [0, 1] (33c)

ż2(t) = −Sg(z2(t)), µ), t ∈ [0, 1] (33d)

y1(0) = z1(0) (33e)

y2(0) = z2(0) (33f)

F ′
1(y1(1)− ŷ1) = 0, F1 := ν⊥1 (33g)

F ′
2(y2(1)− ŷ2) = 0, F2 := ν⊥2 (33h)

z1(1) = ẑ + sενw (33i)

z2(1) = ẑ − sενw. (33j)

The Equations (33a–33d) denote the dynamics for the stable and unstable paths,
(33e) and (33f) assure hat the unstable and stable parts are continuously con-
nected and the next two equations denote the usual asymptotic transversality
conditions. The last two equations (33i) and (33j) are also asymptotic boundary
conditions, assuring that the solution ends up at the linearized stable manifold,
but since we have to guarantee that they do not overlap in the state space we
also have to specify the specific branch of the weak unstable manifold. Note
that the times T and S have to be handled as free parameter values, since the
end points z1(1) and z2(1) are now fixed. The parameter s ∈ {−1, 1} has to be
chosen such that the unstable paths have no overlap.

Practical remark. For practical usage the BVP (33) is rather bulky and to check
if an unstable node is a threshold point or if there exists an indifference point
it is more convenient to try to continue the stable paths to the unstable node.
The fixed truncation time should be chosen large enough. If the continuation
succeeds the unstable node cannot be a threshold point. But if continuation
fails one has to check the exact reason.
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This cumbersome formulation of a rather simple issue is a result of the (lo-
cally) asymptotic unstability of the equilibrium ẑ. This property has the effect
that every path in its neighborhood converges (in reversed time) to the equi-
librium. Therefore the linear asymptotic transversality condition (33h) does
not guarantee that the path ends up at the “correct” branch of the unstable
eigenspace. Anyhow, since for higher dimensions the analogous case is repre-
sented by a saddle exhibiting a (one-)dimensional stable manifold the simpler
criterion, with fixed end time(s), can be used.

7. Bifurcations of the optimal vector field

In the previous sections we presented specifications of the BVPs for the
cases that the optimal vector field exhibits unique or multiple solutions, but is
“stable” to small disturbances of the parameter values. Next we analyze in more
detail the numerical setting to determine the crossing between two qualitatively
different optimal vector fields in the parameter space. Thus we calculate the
bifurcations of the optimal vector field. In Kiseleva and Wagener (2010) the
authors give a fairly general classification of possible codimension one and two
bifurcations of an optimal vector field for a one-state optimal control problem
of the type we are analyzing. Using these results we show how to set up the
boundary conditions characterizing the different types of bifurcations.

7.1. Indifference-attractor bifurcation (IAB)

In Wagener (2003) it has been proved that a heteroclinic bifurcation, a sta-
ble and unstable path of two saddles coincide (see Fig. 5), can give rise to the
emergence of indifference points. And in Kiseleva and Wagener (2010) this bi-
furcation was classified as one of the possible codimension one bifurcations an
optimal vector field can undergo. In Fig. 6 the typical situation before, at and
after an indifference-attractor bifurcation is depicted.

To set up the BVP characterizing an heteroclinic connection we note that
this means that the stable path y1(·, µb) of an equilibrium ŷ1(µb) coincides with
an unstable path y2(·, µb) of an equilibrium ŷ2(µb). For notational simplicity
the parameter value µ ∈ R is assumed as a single value. Reversing time an
unstable path becomes a stable path and we therefore find

ẏ1(t, µ) = T1f1(y1(t, µ)), µ), t ∈ [0, 1] (34a)

ẏ2(t, µ) = −T2f2(y2(t, µ), µ), t ∈ [0, 1] (34b)

y11(0, µ) = y12(0, µ) (34c)

ψ(y1(·, µ), y2(·, µ)) = 0 (34d)

F1(µ)
′(y1(1, µ)− ŷ1(µ)) = 0, F1(µ) := ν1(µ)

⊥ (34e)

F2(µ)
′(y2(1, µ)− ŷ2(µ)) = 0, F2(µ) := ν2(µ)

⊥. (34f)

The truncation times T1 and T2 are once more assumed as fixed. Since (34c)
is satisfied for every point on the (un)stable path the (phase) condition, (34d),

18



has to be provided which allows to choose one specific solution. The simplest
possibility for such an equation is to fix, e.g., the first coordinate of the initial
state to some value ξ, yielding

ψ(y1(·, µ), y2(·, µ)) := y11(0, µ)− ξ.

At this place ν2(µ) denotes the eigenvector corresponding to the positive eigen-
value of the saddle ŷ2.

Practical remark. The computation of the bifurcation parameter µb is numer-
ically more extensive than for the previous algorithms. The reason is simply
that we have to determine a specific parameter value and therefore the pa-
rameter value changes during its computation. But a change of the parameter
value induces a change of the equilibira and the corresponding linearized stable
manifold.

Therefore we have to tackle the problem of the parameter value dependence.
If the boundary value solver is able to handle differential-algebraic equations
(DAEs) the BVP (34) can be extended by adding the algebraic equations

f1(ŷ1(µ), µ) = 0

f2(ŷ2(µ), µ) = 0,

and externally determine the asymptotic boundary condition vectors (matrices)
F1(µ) and F2(µ) using some algorithm for the calculation of eigenvectors.

For the actual computations we used an even simpler approach, where the
equilibria and asymptotic boundary condition matrices were externally com-
puted using a solver for nonlinear equations and a solver for the computation
of eigenvectors.

In a two dimensional parameter space we can in general find an IAB curve.
Thus choosing two parameter variables (µ1, µ2) a continuation algorithm can
be used to calculate this curve.

7.2. Indifference-repeller bifurcation (IRB)

In Kiseleva and Wagener (2010) two types of indifference-repeller bifurca-
tions are distinguished, denoted as bifurcation of type one (IRB1) and type two
(IRB2). The latter occurs, when a threshold point turns into an unstable focus,
i.e., the imaginary parts of the eigenvalues become non-zero, and therefore an
indifference point appears. Such a bifurcation can simply be detected by con-
sidering the local properties of the Jacobian matrix evaluated at the threshold
point (unstable node). It has to be checked by the algorithm in Sect. 6.2 if an
indifference point appears at the same time.

An indifference-repeller bifurcation of type one occurs in the transition from
a threshold to an indifference point and the eigenvalues of the unstable node
remain real numbers. For that case it has been shown in Kiseleva and Wagener
(2010) that at the bifurcation the strong unstable path of the unstable node
coincides with the stable path of the saddle (see Fig. 7). To locate the exact
parameter value of the bifurcation we can therefore set up the same BVP as for
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Figure 5 (Animation): This figure depicts the process of finding an indifference-
attractor bifurcation for the parameter value a. Therefore the unstable path
(dashed line) of the left equilibrium and the stable path (solid line) of the right
equilibrium are continued to an initial state x(0) = 2 for a = 7.25. This is an
approximation for the exact value a, where the heteroclinic connection occurs.
Solving the BVP (34) determines the bifurcation parameter value as ab = 7.3501
and returns the heteroclinic connection between the two saddles (blue dots).
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Figure 6 (Animation): The case of an indifference-attractor bifurcation is de-
picted for changing the parameter value a. The gray dot denotes a non-optimal
equilibrium with part of its unstable manifold (dashed line). Decreasing a the
stable path of the optimal equilibrium comes closer to the unstable path until
they coincide in a heteroclinic connection. This characterizes the indifference at-
tractor bifurcation which lets emerge an indifference point shown by the dashed
black line.
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Figure 7 (Animation): This figure depicts the locating of an indifference-repeller
bifurcation for the parameter value a. Therefore the strong unstable path
(dashed line) of the unstable node and the stable path (solid line) of the higher
saddle are continued to an initial state x(0) = 1.26. Solving the BVP (34)
(with adapted eigenvector ν2(µ)) determines the bifurcation parameter value as
ab = 5.0911, where the strong unstable path and the stable path are connected.
The red line points into the direction of the strong unstable eigenvector.

the IAB, where ν2(µ) of (34f) is now taken as the strong unstable eigenvector,
i.e., corresponding to the largest eigenvalue.

Practical remark. For the calculation of the strong unstable path the fixing of
the truncation time becomes more severe since the linear equation (34f) is not
only satisfied by the orthogonality of the vector but also if the end point of
the path and the equilibrium (nearly) coincide. Since in the neighborhood of
an unstable equilibrium every path converges to this equilibrium (by reversed
time) for a large truncation time (34f) could (numerically) be satisfied for a path
near enough to the equilibrium but not lying on the strong unstable eigenspace.

7.3. Codimension two bifurcations (ISN) and (DIR)

More involved bifurcations are those of codimension two, which usually ap-
pear as a result of the coincidence of two bifurcations of codimension one. Once
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more we refer the reader to Kiseleva and Wagener (2010), where the indifference-
saddle-node bifurcation (ISN) is defined as the coincidence of the two codimen-
sion one bifurcations IAB and IRB1.

7.3.1. ISN bifurcation

Thus for µb ∈ R
2 there exist two equilibria, a saddle ŷ1(µb) and a saddle-

node equilibrium ŷ2(µb), with a heteroclinic connection path, given by the stable
y1(·, µb) and center manifold path y2(·, µb). Denoting the Jacobian matrix of
ŷ2(µ) as J2(µ) the corresponding BVP can be stated as

ẏ1(t, µ) = T1f1(y1(t, µ)), µ), t ∈ [0, 1] (35a)

ẏ2(t, µ) = −T2f2(y2(t, µ), µ), t ∈ [0, 1] (35b)

y11(0, µ) = y12(0, µ) (35c)

ψ(y1(·, µ), y2(·, µ)) = 0 (35d)

F1(µ)
′(y1(1, µ)− ŷ1(µ)) = 0, F1(µ) := ν1(µ)

⊥ (35e)

F2(µ)
′(y2(1, µ)− ŷ2(µ)) = 0, F2(µ) := ν2(µ)

⊥ (35f)

det(J2(ŷ2(µ), µ)) = 0. (35g)

The boundary conditions (35a–35f) are already known from the IAB (34), where
only ν2(µ) is the eigenvector corresponding to the eigenvalue zero. The last
condition (35g) is the necessary condition for a saddle-node bifurcation.

7.3.2. DIR bifurcation

The second codimension two bifurcation is the double-indifference-repeller
bifurcation (DIR). This bifurcation is characterized by two saddles and a de-
generate node, where the stable path of one of the saddles coincides with the
unstable path corresponding to the unique eigenvector of the degenerate node.
Additionally there is no overlap of the stable manifolds (in the neighborhood of
the degenerate node). To guarantee this last requirement we have to restrain
to the cumbersome formulation of problem (33). Denoting the stable paths as
yi(·, µ), the unstable paths as zi(·, µ), i = 1, 2 and the Jacobian matrix of the
degenerate node as J2(µ) with the corresponding eigenvector νd(µ) the BVP for
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DIR becomes

ẏ1(t, µ) = T1f(y1(t, µ), µ), t ∈ [0, 1] (36a)

ż1(t, µ) = −Tf(z1(t, µ), µ), t ∈ [0, 1] (36b)

ẏ2(t, µ) = T2g(y2(t, µ), µ), t ∈ [0, 1] (36c)

ż2(t, µ) = −Sg(z2(t, µ), µ), t ∈ [0, 1] (36d)

y1(0, µ) = z1(0, µ) (36e)

y2(0, µ) = z2(0, µ) (36f)

F ′
1(y1(1, µ)− ŷ1(µ)) = 0, F1 := ν1(µ)

⊥ (36g)

F ′
2(y2(1, µ)− ŷ2(µ)) = 0, F2 := ν2(µ)

⊥ (36h)

z1(1, µ) = ẑ(µ) + sενd(µ) (36i)

z2(1, µ) = ẑ(µ)− sενd(µ) (36j)

tr(J2(µ))− 4 det(J2(µ)) = 0. (36k)

The conditions (36a–36j) are already described for the problem of a threshold
point (33) and the last condition (36k) characterizes a degenerate node, i.e., an
equilibrium in the transformation from an unstable focus to an unstable node.

Practical remark. For the actual computation the parameter values µ cannot
be varied totally free in a neighborhood of the bifurcation parameter, but have
to be restricted to the (one-dimensional) manifold given by

det(J2(µ)) = 0

or

tr(J2(µ))− 4 det(J2(µ)) = 0,

respectively. Thus an implemented algorithm has to assure that these requests
are satisfied.

8. Conclusion

We presented an algorithm for the numerical analysis of the optimal vector
field as it usually occurs in the context of economic and ecological applications.
These are discounted, infinite time horizon, autonomous and highly nonlinear
problems, with only a few number of state and control variables. None of these
restrictions are principal limitations of this algorithm, and in fact the author
has used this algorithm already for a variety of models differing from the here
presented class of models. Anyhow the number of state and control variables can
be a severe restriction especially in the presence of various control constraints.

The main idea underlying the here presented method is quite simple. First
the initial data of the problem are changed in a way, such that the solution
(or more exact a solution candidate) can easily be computed. In our example
these are the steady state solutions, thus the initial state y(0) = x0 is changed
into y(0) = ŷ. Having computed such a “primitive” solution a pathfollowing
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algorithm is used to continue it to a solution we are actually interested. If
this continuation process is carried out carefully possible occurring bifurcations
deliver insights into the optimal behavior of the system. Therefore even if the
continuation to the original data fails we gained important information about
the solution structure. And of course the application of continuation is not
restricted to the initial data x0 or parameter values, it can also be used to solve
finite time horizon problems, non-autonomous problems, etc. Thus a further
direction for future research work is an extension of this method to other types
of models, e.g., differential games, delayed systems, etc.

The approach to use a boundary value solver together with a continuation
technique let this algorithm be well adapted for the application to bifurcation
problems of the optimal vector field. In future work the interplay between the
boundary value solver and the pathfollowing procedure has to be implemented
in a more sophisticated way to provide an efficient numerical tool for bifurca-
tion analysis of the optimized system, like it exist already for usual nonlinear
dynamics, e.g., with MatCont. That such an implementation can be realized,
even in the case, where the boundary value solver is assumed as a “black box”,
has already been shown in Winkler (1985). Thus an immediate application of
the here presented methods is the extension to higher dimensional systems and
their numerical analysis, which will then include the occurrence of indifference
and threshold manifolds, of limit cycles and the detection of their bifurcations.
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Appendix A. Proving that (FM) is normal

Let us assume that (x∗(·), u∗(·)) is an optimal solution of the problem (FM)
and that λ0 = 0. then the Hamiltonian maximizing condition (11) reduces to

max
u≥0

λ(t)

(

x(t)

(

1−
x(t)

a

)

−
1

(c+ τ )

x(t)2

1 + x(t)2
− ux(t)

)

. (A.1)

We note that u only appears linearly in (A.1) yielding that the maximum de-
pends on the sign of

∂H

∂u
= −λ(t)x(t). (A.2)

Since x(t) > 0 and λ(t) ≥ p > 0 has to be satisfied by the non-negativity of
Lagrangian multiplier, it follows that u∗(t) = 0. From the dynamics (6) we
therefore find that x∗(·) converges to a stable equilibrium x̂ > 0. Considering
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the utility function we see that in the neighborhood B(x̂, ε) of we can choose a
positive value of u on a finite time span ∆T such that

u(t)(px(t)− u(t)) > 0, t ∈ [T̃ , T̃ +∆T ]

yielding a positive objective value and therefore violating the optimality of
u∗(t) = 0. This finally proves that λ0 can be set to one.

Appendix B. Existence and convergence of an optimal solution

In this section we prove the assumptions Assumption 1 and Assumption 2
stated at the beginning. We start with the behavior of the solution for the time
going to infinity. Considering the total time derivative of the optimal control
value in the interior of the control region (see (15)), i.e,

u̇(t) =
d

dt

(

x(t)

2
(p− λ(t))

)

.

Substituting the costate λ and the expressions for the dynamics finally yields

u̇(t) = u(t)x(t)

(

1

a
+

1− x(t)2

(c+ τ )(1− x(t)2)2) + 1
2

)

− u(t)2 + ru(t)

−
x(t)

2
p

(

r − 1 +
2x(t)

a
+

2x(t)

(c+ τ )(1− x(t)2)

)

. (B.1)

On the boundary of the control region the dynamics is trivially zero.
Summing up we find from the state dynamics (6) and control dynamics

(B.1) together with its extension on the boundary that there exist xm > 0 and
um > 0 such that the compact set [0, xm] × [0, um] is invariant under the
dynamics. Since limit cycles cannot occur for a positive discount rate r > 0, see
e.g., Wagener (2003), the Poincaré-Bendixson theorem assures that the paths
converge to an equilibrium in the interior x̂ > 0 and û > 0 or converge to an
equilibrium at the boundary of the control region, i.e., x̂ > 0 and û = 0. But
repeating the arguments for the previous section we see that the latter case
does not yield an optimal solution. Thus every optimal solution converges to
an interior equilibrium. By the compactness of the region [0, xm]× [0, um] the
existence of an optimal solution is assured, which finally proved that Assumption
1 does hold. The constraint qualification is trivially satisfied.

Appendix C. Definitions and theorems for ODEs

Let f : Rn → R
n and b : Rn × R

n → R
n then a problem specified by

ẋ(t) = f(x(t)), t ∈ [0, T ] (C.1)

b(x(0), x(T )) = 0 (C.2)
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is called a (two-point) boundary value problem (TBVP or shortly BVP), and
b(x(0), x(T )) = 0 are called the (two-point) boundary conditions. If (C.2) is
replaced by a function b : Rn × . . .× R

n → R
n with

b(x(0), x(t1), . . . , x(tm), x(T )), 0 < t1 < . . . < tm < T (C.3)

problem (C.1) and (C.3) is called a multi-point boundary value problem (MBVP).
Let x̂ be an equilibrium of the ODE (C.1) and ξi, i = 1, . . . , n be the

eigenvalues of the Jacobian matrix J(x̂). Then

Es = span{νj ∈ R
n : (ξj) < 0}, dimEs = n− (C.4)

is called the stable eigenspace.
Let x̂ be an equilibrium of the ODE (C.1) and U be a neighborhood of x̂;

then the set

Ws
loc(x̂) = {x ∈ U : x(0) = x, lim

t→∞
x(t) = x̂, and x(t) ∈ U, t ≥ 0}

is called the stable local manifold of x̂. The set

Ws(x̂) =
⋃

t≤0

{x(t) : x(0) ∈ Ws
loc(x̂)} (C.5)

is called the global stable manifold of x̂. Reversing time gives you the definition
for the unstable case.

Now the following theorem can be proved:

Theorem 1 (Stable manifold theorem). Suppose that x̂ is an equilibrium of
(C.1), where f ∈ Ck(Rn). Let n− be the corresponding dimensions of the stable
subspaces Es. Then there locally exist the local stable Ck manifold Ws

loc(x̂) of
the dimensions n− being tangent to Es,Eu.

A (hyperbolic) equilibrium x̂ satisfying 0 < n− < n is called a saddle point
and a path converging to the saddle is called a stable path or saddle path.

Theorem 2 (Characterization of the linearized stable manifold). Let x̂ be a
saddle of (C.1). Then (x− x̂) ∈ Es(x̂) if and only if x− x̂ is orthogonal to every
eigenvector b of the adjoint problem

ẋ(t) = −
∂f

∂x
(x̂)′x(t),

where b corresponds to an eigenvalue ξ of the Jacobian matrix at x̂ with ξ > 0.
Then

Es(x̂) = {x : F ′ (x− x̂) = 0} , (C.6)

with F an n+ × n matrix constituted of all eigenvectors bj corresponding to
ξj > 0, j = n− + 1, . . . , n.

For equilibria of the canonical system of problems (DIP) the following the-
orem holds (see, e.g., Grass et al., 2008):
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Theorem 3 (Dimension of the stable manifold). Let x̂ ∈ R
2n be an equilibrium

of the canonical system of a problem (DIP) and J(x̂) the Jacobian matrix. Then
the corresponding eigenvalues ξi, i = 1, . . . , 2n, are symmetric around r/2 and
the dimension of the (local) stable manifold is at most n and

trJ(x̂) = rn.

Appendix D. Numerical Continuation

We consider nonlinear (operator) equations of the form

F (x, γ) = 0 (D.1)

where F : X × R → Y is sufficiently smooth and X and Y are Banach-spaces,
and a pair (x, µ) satisfying (D.1) is called a solution of (D.1).8 An important
example for such a nonlinear operator equation is the BVP (C.1)-(C.2).

The task of continuation (path-following) is now, given a specific solution
(xs, µs), find a (smooth) solution curve x(γ) satisfying

F (x(γ), γ) = 0

with µ ∈ [µs, µe].
The existence of such a solution curve x(γ) is, e.g., assured by the implicit

function theorem,existence theorems under less restrictive conditions can be
found in Dontchev and Rockafellar (2009). For continuation in context with
ODEs and BVPs the reader is referred to Kuznetsov (1998); Winkler (1985);
Kitzhofer et al. (2009) and Krauskopf et al. (2007).

The numerical task of a continuation process is to provide an algorithm al-
lowing the successive computation of points x(µi), i = 1, . . . , N, approximating
the solution curve x(µ) with µN = µe.

Appendix D.1. Continuation Algorithms

Next we present two simple continuation algorithms working “above” some
zero finding solver, in our context BVP solver (for a more detailed description
see, e.g., Grass et al., 2008). This approach has the advantage of being indepen-
dent on the actually used solver, but the disadvantage of disregarding structural
information of the specific solver. Anyhow, even for the “above” method a more
sophisticated continuation algorithm can be implemented, cf. Winkler (1985),
but the following proved sufficient for all problems we analyzed so far.

The problem we are facing is

F (x, µ) = 0, (D.2)

with F : C1 × R
p → C0 a BVP, depending on the parameter value(s) µ. Then

a given solution (xs, µs) shall be continued to some µe 6= µs.

8A reader unfamiliar with functional analysis can replace Banach-spaces by Euclidean
spaces. In fact since for numerical purposes infinite dimensional spaces are discretized, the
actual computation takes place in Euclidean spaces.
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Reparameterization: We reparameterize the problem by introducing a scalar
continuation variable γ ∈ [0, 1] setting

µ(γ) := µs + γ(µe − µs)

= µs(1− γ) + γµe, γ ∈ [0, 1], (D.3)

with µ(0) = µs and µ(1) = µe.

Initialization: We define some positive constant 0 < σ0 < 1 and determine
the solution of (D.1) for

γ1 = γ0 + σ0, (D.4)

with x0 = xs and γ0 = 0.

Continuation Step i > 1: To follow solutions, where the stable manifold ex-
hibits turning points we augment problem (D.2) by adding

Φ(γ, γi, σ) = γ − γi − σ (D.5)

Φ(x, γ, xi, γi, σ) := ‖x− xi‖
2 + (γ − γi)

2 − σ2, (D.6)

Φ(x, γ, xi, xi−1, γi, γi−1, σ) :=

(

∆xi
∆γi

)′ (

x− xi
γ − γi

)

− σ

∥

∥

∥

∥

(

∆xi
∆γi

)∥

∥

∥

∥

2

, (D.7)

∆xi = xi − xi−1, ∆γi = γi − γi−1,

where xk = x(γk), k = i− 1, i are previously detected solutions and σ > 0
is a given constant, assuring that the new solution differs from the pre-
vious solution. Geometrically (D.6) describes a circle of radius σ around
the solution at step i, whereas (D.7) ascribes a line perpendicular to the
direction of the linear extrapolation of the last two detected solutions.

Prediction Step: The approximated solution is linearly extrapolated from the
two previous solutions, (xi−1, γi−1) and (xi, γi), yielding

x̃i+1 = xi + α (xi − xi−1) = xi(α+ 1)− αxi−1 (D.8a)

γ̃i+1 = γi + (γi − γi−1) = γi(α+ 1)− αγi−1. (D.8b)

The constant α is determined, depending on the current and previous step
size given by the ratio

α =
σi+1

σi
.

Appendix D.2. MATLAB package OCMat

It was also one of the aims of the author to implement the here presented
method within a consistent framework allowing extension in various directions
and making it accessible for anyone who is interested. Therefore a first step
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has been done by programming, together with A. Seidl,9 the MATLAB package
OCMat.10

The main steps for using this package are:

1. Provide an initialization file with the model description.

2. Generate the necessary conditions and needed files for computation auto-
matically.

3. Create an MATLAB object consisting of the model for specific parameter
values.

4. Analysis of the model, including

• Calculation of equilibria, limit cycles.

• Calculation of paths of the canonical system.

• Locating and continuing indifference points.

• Bifurcation analysis of the optimal vector field.

• Interface to the numerical bifurcation tool MatCont, see Dhooge et al.
(2003).11

5. Support to save and present the results

• Plotting commands depicting solution paths in the phase space, as
time paths, etc.

• Storing the computational results for later usage.

• Supporting the generation of animations.

• Interface for creating figures under LaTeX.

In the actual version of OCMat models of the following type can be analyzed; au-
tonomous models over a finite or infinite time horizon, mixed control constraints,
pure state constraints of order one, and integral constraints all of inequality-
type, i.e.,

c(x, u) ≥ 0, h(x) ≥ 0,

∫ t

0

i(x(s), u(s)) dt ≥ 0.

The dynamics have to given by ODEs, the control variables have to appear non-
linearly, the finite number of optimal control values have to identified either
explicitly or implicitly. Event though there is no principal restriction on the
number of states and controls, this numerical technique is intended for rather
low dimensional problems.

In updated versions of this package we want to increase the user-friendliness
and also the range of possible applications. One of the strong points of the
implementation as a MATLAB package is the capability of visualization as can
be seen by the animations presented in this article.

9ORCOS, Institute of Mathematical Methods in Economics, Vienna University of Tech-
nology, A-1040 Vienna, Austria

10This can be downloaded from http://orcos.tuwien.ac.at/research/ocmat_software.
11This toolbox can be downloaded from http://matcont.sourceforge.net.
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