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Abstract 

Discounting has to take account of ecosystem services in consumption and production. 

Previous literature focuses on the first aspect and shows the importance of the relative 

price effect, for given growth rates of consumption and ecosystem services. This paper 

focuses on intermediate ecosystem services in production and shows that for limited 

substitutability and a low growth rate of these ecosystem services, the growth rate of 

consumption, and thus the discount rate, declines towards a low value. Using a Ramsey 

optimal-growth framework, the paper distinguishes three cases. If ecosystem services 

can be easily substituted, then the discount rate converges to the usual value in the long 

term. Secondly, if ecosystem services can be easily substituted in production but not in 

consumption, the relative price effect is important. Finally, and most interestingly, if 

ecosystem services cannot be easily substituted in production, the discount rate declines 

towards a low value and the relative price effect is less important. Another part of the 

previous literature has shown that a declining discount rate is the result of introducing 

several forms of uncertainty, but this paper reaches that conclusion from an endogenous 

effect on the growth rate of the economy. 
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1. Introduction 

Discounting is the way in which we relate the future and the current costs and benefits 

in cost-benefit analyses for public policy and project evaluation. Since the pioneering 

work of Fisher and Krutilla (1975) and later Weitzman (1994), the literature has given 

a lot of attention recently to the role and the relative scarcity of the natural environment 

in the provision of ecosystem services (e.g., Guesnerie, 2004; Weikard and Zhu, 2005; 

Hoel and Sterner, 2007; Gollier, 2010; Traeger, 2011). An important argument is that 

the growth rates of the economy and the ecosystem services differ. This implies that 

the usual assumption of constant relative prices does not hold, since the valuation of 

environmental benefits relative to produced consumption goods changes over time. 

Cost-benefit analyses should either take the expected change in relative prices into 

account or use different discount rates for consumption and for ecosystem services. The 

elasticity of substitution plays, of course, an important role. This literature derives the 

discount rate from the Ramsey rule5 with a reduced form for welfare depending on the 

flow of consumption and on the quality of the environment. An interesting result is that 

the change in relative prices, or the gap between the discount rates, is proportional to 

the difference between these growth rates, and inversely related to the elasticity of 

substitution. Empirical work (Baumgärtner et al, 2015; Koetse et al, 2016; Drupp, 2018) 

shows that this gap is in the order of 1% and varies with the type and the role of the 

ecosystem service that is considered. 

A reduced form for welfare, with exogenous growth rates for consumption and for the 

quality of the environment, does not take the different roles of ecosystem services into 

account. Ecosystem services can have a direct amenity value, but more often ecosystem 

services have an intermediate role as an input factor into production. It follows that the 

growth rate of consumption depends on the availability of ecosystem services and on 

the possibilities of substitution. More specifically, technological progress may drive the 

economic growth, but growth may be restricted if ecosystem services in production do 

not grow and cannot be easily substituted in production. This has an important effect 

on the discount rate. The literature on changing relative prices assumes that the growth 

rates of consumption and ecosystem services are exogenous and given. This paper adds 

the endogenous effect of limited availability and substitutability of ecosystem services 

on the growth rate of the economy, and therefore on the discount rate. 

                                                           
5 The Ramsey rule yields the discount rate as the rate of pure time preference plus the product of the 

elasticity of marginal utility and the growth rate. 
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In order to analyse the roles of ecosystem services both in utility and in production, we 

use a full Ramsey optimal-growth framework. Intermediate ecosystem services are a 

factor of production and final ecosystem services are an argument in welfare. In order 

to allow for substitution, we use both a CES utility function and a CES production 

function. We derive the steady-state conditions for balanced growth. If the elasticities 

of substitution are high, we get the standard growth rate and discount rate in the long 

run. However, if the elasticity of substitution in production is low, we get a low growth 

rate in the long run, with a low discount rate given by the Ramsey rule. If the elasticity 

of substitution is high in production but low in welfare, we get a high growth rate in the 

long run, but also the relative price effect that was considered in the extant literature. 

Moreover, the full Ramsey framework allows considering the paths of the growth rate 

and the discount rate towards the balanced-growth steady state. In this way, we can 

show the effects of the limited availability and substitutability of ecosystems services 

on the term structure of the discount rate. 

An important conclusion is that when the restrictions of the natural environment start 

to kick in, the path of the discount rate is declining towards a very low level in the long 

run. The term structure of the discount rate will inherit the negative slope from the term 

structure of the growth rate (Gollier and Hammitt, 2014). A declining discount rate also 

results from various effects of uncertainty (Gollier, 2002, 2010, 2013; Newell and Pizer, 

2003; Weitzman, 2007, 2010). Several countries have implemented this in their official 

policy (Groom and Hepburn, 2017). The main idea is that increasing uncertainty about 

the growth rate of the economy increases the effects of risk aversion and of prudence, 

assuming concavity of utility and convexity of marginal utility. We leave uncertainty 

out in this paper, but it is clear that all arguments point in the same direction: a lower 

discount rate in the long term. This is very important for cost-benefit analyses with a 

very long time horizon, such as the costs and benefits of climate change mitigation and 

adaptation. A flat discount rate effectively means that the benefits in the long run hardly 

count, but a declining discount rate changes the picture. 

This paper provides a framework for analysing the effects on the discount rate that are 

caused by a possible low growth rate and limited substitutability of ecosystem services. 

It is, of course, an empirical question to determine the sectors for which this is relevant, 

and to quantify the effects by determining growth rates and elasticities of substitution. 
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Section 2 analyses the role of ecosystem services in production, using the full Ramsey 

optimal-growth framework. Section 3 adds the role of ecosystem services in utility, in 

order to get the full picture with the three different cases. Section 4 provides numerical 

simulations to show the paths of the growth rate and the discount rate for the different 

cases. Section 5 concludes. 

 

2. Ecosystem services in production 

Ecosystems are natural capital. Services from ecosystems provide essential inputs (e.g. 

pollination, water quantity and water quality) into production processes and thus have 

production value. Ecosystems follow the dynamics of biophysical processes. These are 

influenced by human activities, but we abstract from this and take an exogenous growth 

rate Eg  (positive or negative) for the ecosystems. Ecosystem services are either a stock 

or a flow variable. For example, pollination that is important for agricultural production 

processes can be measured by the number of bees in a neighbouring wild area at some 

point in time, which is a stock variable. A change in the wild area changes the number 

of bees and therefore the pollination capacity. However, extractions of water and other 

resources to be used in production are flow variables. We simply assume here that the 

availability or the quality of the stock E affects the production. We want to investigate 

how the constant rate Eg  of growth (or de-growth) of this stock E affects the growth 

rate of the economy. 

We use the Ramsey optimal-growth framework, with ecosystem services as an input in 

the production function. This allows us to consider the effect of intermediate ecosystem 

services on the growth rate of the economy and on the discount rate. 

In the Ramsey growth model the optimal allocation of investment and consumption is 

determined by maximizing the integral of discounted welfare U of consumption C over 

time, subject to the accumulation of capital K: 

 

(1)  0

0

max ( ( )) ,

( ) ( ( ), ( ), ( )) ( ), (0) ,

te U C t dt

K t F K t E t H t C t K K







  


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where F denotes the (net) production function, E ecosystem services, and ρ the pure 

rate of time preference. Effective labour input H is labour input scaled by human capital 

and labour-augmenting technology. It grows at exogenous constant rate Hg . Ignoring 

population growth and human capital, we may simply refer to the growth rate Hg  as 

the rate of technical change. In order to capture the increasing scarcity of the ecosystem 

services, we assume throughout the paper that E Hg g . 

 

The (consumption) discount factor D is the marginal contribution to welfare of future 

consumption relative to the marginal contribution to welfare of current consumption, 

or the marginal rate of substitution: 

 

(2)  ( ) ( ( )) / ( (0)).tD t e U C t U C    

 

The (consumption) discount rate r is therefore the rate at which the discount factor falls, 

( ) ( ) / ( )r t D t D t  , which implies: 

 

(3)  ( ) ( ( )) / ( ( )).r t U C t U C t     

 

The discount rate reflects the additional minimum amount of consumption the society 

requires at time t, in exchange for giving up one unit of consumption at time t – dt (with 

dt arbitrarily small), without suffering a decline in welfare.6 

In problem (1), with the current-value Hamiltonian function G, 

 

(4)  ( , , ) ( ) ( ( , , ) ),G C K U C F K E H C     

 

the optimal allocation requires 

 

(5)  
( ) ,

( ) ( ) ( ( ), ( ), ( )) ( ),K

U C

t t F K t E t H t t



  

 

  
 

                                                           
6 For the more general welfare function U(C,E), cf. below, we can write the consumption discount rate  

as ( ) ( ( ), ( )) / ( ( ), ( )),C

C Cr t U C t E t U C t E t   and we can similarly define an environmental discount 

rate as ( ) ( ( ), ( )) / ( ( ), ( )).E

E Er t U C t E t U C t E t   
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where λ denotes the shadow value of capital and ( ( ), ( ), ( ))KF K t E t H t  the (net) marginal 

product of capital. By comparing (3) and (5), it is easy to see that optimality requires 

that the discount rate, r, is exactly equal to the (net) marginal product of capital, KF . 

With a constant relative risk aversion (CRRA) utility function 1( ) / (1 )U C C    , 

where γ denotes the inverse of the elasticity of intertemporal substitution, substitution 

of the first part of (5) into the second part of (5) leads to the Keynes-Ramsey rule for 

the optimal consumption path 

 

(6)  1( ) ( ( ( ), ( ), ( )) ) ( ),KC t F K t E t H t C t    

 

where a transversality condition has to hold. In order to find the optimal path of all the 

variables, we have to solve the system: 

 

(7)  

0

1

0

0

( ) ( ( ), ( ), ( )) ( ), (0) ,

( ) ( ( ( ), ( ), ( )) ) ( ),

( ) ( ), (0) ,

( ) ( ), (0) .

K

H

E

K t F K t E t H t C t K K

C t F K t E t H t C t

H t g H t H H

E t g E t E E

 

  

 

 

 

 

 

The solution of (7) allows us to identify the time path of the discount rate r = FK. 

 

2.1 Cobb-Douglas production system with ecosystem services 

For a Cobb-Douglas production function, it is easy to show that the economy converges 

to a steady state with balanced growth in which the growth rate g depends on the growth 

rates of technological change and ecosystem services. 

Suppose that the production function is given by 

 

(8)  1( , , ) ,CDF K E H AK E H      

 

where A denotes total factor productivity and α, β and 1 - α - β the respective shares of 

capital, ecosystem services and labour-augmenting technological change in production. 
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Defining the composite input 
/(1 ) 1 /(1 ) ,X E H       we can write production function 

(8) as a Cobb-Douglas function with K and X as inputs: 

 

(9)  1( , ) ,CDF K X AK X   

 

where X grows at a constant exogenous rate g, the weighted average of the growth rates 

of ecosystem services and effective labour input: 

 

(10)  1 .
1 1

H Eg g g
 

 

 
   

  
 

 

It follows immediately that on a balanced growth path, output FCD and capital K grow 

at rate g. Brock and Taylor (2010) have a comparable approach but they consider the 

growth rate of the abatement technology in a problem with environmental pollution. 

Moreover, since the problem is now isomorphic to the standard Ramsey growth model 

with a Cobb-Douglas production function and an exogenous constant rate of technical 

change (where our composite input X replaces the effective labour input in the standard 

model, e.g. Acemoglu (2009)), we can state the following proposition: 

 

Proposition 1. For the Cobb-Douglas production function (8), the economy converges 

to a balanced growth path along which output, consumption and capital grow at growth 

rate g, given by (10), and the discount rate is constant. 

If 1/(1 )

0 0( ) ( / ( ))K X A g       , the discount rate de(in)creases monotonically over 

time along the transition towards balanced growth. 

 

Proof. It is convenient to define the variables  /c C X  and /k K X  and to rewrite 

problem (1), using 
0( ) ,gtX t X e  as follows: 

 

(11)  

1
( ( 1) ) 1

0

0

0 0

max ( ( )) , ( ) ,
1

( ) ( ( )) ( ) ( ), ( ) , (0) / .

g t c
e X U c t dt U c

k t f k t gk t c t f k Ak k K X


  





 
    



    


 

 

The Keynes-Ramsey rule becomes 
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(12)  1( ) ( '( ( ) ) ( ).c t f k t g c t      

 

In the steady state (k*, c*), consumption C, capital K and output FCD grow at the same 

rate g, and the discount rate is constant and given by the Ramsey rule 

 

(13)  ( *) .f k g     

 

The specification of the production function f in (11) implies that 1( *) ( *) .f k A k     

It follows from (13) that 1/(1 )( ) / ( ) * ( / ( ))K t X t k A g        along the balanced 

growth path. The transitional dynamics is monotonic. If 0 0(0) / ( ) *,k K X k    then 

( )k t  converges to k* from below (above). It follows that the discount rate de(in)creases 

monotonically over time on the transition path. Q.E.D.  

 

Equation (10) for the growth rate g has an easy interpretation. If the ecosystem services 

grow at the same rate as the technology Hg , the economy grows at that rate as well, 

but if the ecosystem services grow at a lower or even negative rate Eg , the economy 

grows at a lower rate g. This downsizing effect depends on the share β of ecosystem 

services in the production. We calibrate the model such that it has a conventional value 

of 0.3 for the share of capital and generates a value slightly below 2% for the balanced 

growth rate (cf. Jones, 2016). We normalize the values of A, 0K  and 0X , choose 

conventional values for the utility parameters ρ and γ (cf. Nordhaus, 2008; Stern, 2006), 

and choose a growth rate of the ecosystem services close to 0. With the following set 

of parameter values: 

 

(14)  
0 0

1.45, 0.02, 0.001,

0.3, 0.2, 0.1, 1,

H Eg g

A K X

 

 

   

    
 

 

the discount rate 1( )f k Ak    is initially equal to 0.03, and it converges to 0.022, 

according to (10) and (13). The stable manifold of the system consisting of (12) and the 

second part of (11) yields the path for the discount rate ( )r f k  depicted in Figure 1. 
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Figure 1 Time path for discount rate: the Cobb-Douglas case 

 

2.2 CES production  

The Cobb-Douglas production function of the previous sub-section implies that the 

production elasticities of each of the inputs are constants, i.e. no matter how scarce or 

abundant an input is, a 1% increase has always the same proportionate effect on output, 

because the elasticity of substitution is one. In the current sub-section we generalize the 

production function to a CES specification in which production elasticities rise or fall 

with abundance, depending on whether the elasticity of substitution is above or below 

unity. We specify the CES production function as 

 

(15)  

1 1 1 1

( , , ) (1 ) ,F K E H A K E H


   
     
    

     
 

 

 

where A denotes total factor productivity, α, β and 1 - α - β the respective shares of 

capital, ecosystem services and labour-augmenting technological change in production, 

and σ the elasticity of substitution. It is convenient again to aggregate the exogenously 

growing inputs into a composite input, which we again denote by X. In this way, we 

can write the production function as a CES function of the endogenously evolving state 

variable K and the exogenously evolving input variable X: 

 

0,02

0,022

0,024

0,026

0,028

0,03

0,032

0 50 100 150

r

t
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(16)  

1 1 1

1 1
1

1 2
1 2

( , ) (1 ) ,

( , ) , , (1 ) .
1

F K X A K X

X X
X E H X E X H


  
 


 


 

 

  


  

 


 
   

 

 
     

 

 

 

It is easy to show that 

 

(17)  1 2

1 2

( ) ( ) ( ), , ,E H
X X E X H

X g X g
X t g t X t g g g g

X X


   


 

 

where Xg  is the growth rate of the composite production input X of ecosystem services 

and labour-augmenting technological change. This growth rate Xg  is the solution of a 

simple differential equation, because it is straightforward to show from (16) that 

 

(18)  

2 2 2

1 2 1 2

2

1 2 1 2

1 ( ) ( ) ( ( ) ( ) )
( )

( ) ( ) ( ( ) ( ))

1
( ) ( ( ) )( ( ) ).

E H E H
X

X X E X H

X t g X t g X t g X t g
g t

X t X t X t X t

g t g t g g t g









   
   

  


  

 

 

The solution of the differential equation (18) is 

 

(19)  

1

0

1 1
( )

0

( ) , ,

1 (1 )
H E

H E
X E

g g t

g g E
g t g h

he H





 

 



 



 



  

  

 

 

which, of course, also follows directly from (17), (16) and (7). 

 

We have assumed that ecosystem services become relatively scarcer over time, so that 

E Hg g . Equation (19) shows that the growth rate of the composite production input 

X of ecosystem services and labour-augmenting technological change, Xg , converges 

either to the growth rate of the ecosystem services Eg  (if 1  ) or to the growth rate 

of the technological change Hg  (if 1  ). If man-made inputs can easily substitute for 
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ecosystem services, the importance of the ecosystem services in production declines 

and technological change drives the economy in the end. However, if man-made inputs 

cannot easily substitute for ecosystem services, the low growth rate of the ecosystem 

services restricts the growth possibilities of the economy. The path of the growth rate 

Xg  follows an (inverse) logistic growth curve. It starts between Eg  and Hg , and moves 

down towards Eg  or up towards Hg , depending on the elasticity of substitution σ. 

From (19) it follows that the initial condition (0)Xg  is determined by 0E  and 0H . If 

1  , so that the growth rate Xg  converges to Eg  in the long run, this initial condition 

is close to Hg , if the variable h in (19) is close to 0 or if 0 0E H . This means that if 

ecosystem services are initially abundant, the growth rate Xg  starts close to Hg  and it 

only comes down in order to converge to Eg  when ecosystem services become scarce. 

If 1  , so that the growth rate Xg  converges to Hg  in the long run, ecosystem services 

do not become scarce because of substitution. 

In the long run the economy will converge to a balanced-growth path with the growth 

rate of the economy equal to Eg  or to Hg . In order to identify the transient path of the 

economy towards this long-run balanced-growth path, and to find the time path of the 

discount rate, we have to solve the system (7). 

 

We have the following proposition: 

Proposition 2. With CES production function (15), the economy converges to the steady 

state in which output, consumption and capital grow at a common growth rate g* and 

the discount rate converges to the steady-state value that is given by the Ramsey rule 

*r g   . If the elasticity of substitution 1  ,  the steady-state growth rate of the 

economy, g*, equals the growth rate of the ecosystem services Eg . If the elasticity of 

substitution 1  , the steady-state growth rate of the economy, g*, equals the growth 

rate of the technological change Hg . 

 

Proof. It is convenient to define the variables /u F K  and /v C K , and to rewrite 

the system (7). From the capital accumulation in (7), it follows that 
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(20)  
( )

( ) ( ).
( )

K t
u t v t

K t
   

 

The discount rate KF  becomes 

 

(21)  

1
1 1 1

.K

F
F A A u

K

 


   
 
 

  
 

 

 

From the first part of (16), it is easy to show that 

 

(22)  
( ) ( ) ( ) ( )

( ) (1 ( )) ( ) (1 ( )) ( ),
( ) ( ) ( ) ( )

K K K K X

F t K t X t K t
t t t t g t

F t K t X t K t
          

 

where the production elasticity K  of capital K is equal to / /K K KKF F F u   . 

Using (20), (22) and (18), it follows that the system (7) becomes 

 

(23)  

 
1

1

( ) (1 ( ( )) / ( ))( ( ) ( ) ( )) ( ),

( ) ( ( ( )) ) ( ) ( ) ( ),

( ) ( 1)( ( ) )( ( ) ),

K X

K

X X E X H

u t F u t u t g t v t u t u t

v t F u t v t u t v t

g t g t g g t g

 







   

     

   

 

 

where (19) gives the explicit solution of the third differential equation. Accordingly, in 

the long run, the growth rate Xg  converges to: 

 

(24)  

 if  1 

lim ( ) * .   if  1

 if  1

E

X
t

H

g

g t g g

g











  
 

 

 

The initial condition (0)u  is equal to 0 0 0 0( , , ) /F K E H K , the initial condition of (0)Xg  

is given by (19), 0E  and 0H , but the initial condition of (0)v  is not predetermined. The 

0u  , 0v   and 0Xg   isoclines are given by 
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(25)  1, ( ( ) ), *,X K Xv u g v u F u g g        

 

respectively. It follows that the steady state of the system (23) becomes ( *, *, *)u v g  

where 

 

(26)  ( *) *, * * *.KF u g v u g      

 

This means that the steady-state discount rate is given by the Ramsey rule. In the steady 

state ( *, *, *)u v g , output, consumption and capital grow at the same rate g*, which is 

given by (24). Q.E.D. 

 

The path of the growth rate Xg  is fully characterized by (19), so that the system (23) is 

essentially a two-dimensional two-point boundary value problem with an exogenous 

time-dependent input. The phase diagram in the (u, v)-plane is depicted in Figure 2. 

 

    
 

Figure 2 Phase diagrams for system (23) 

 

The 0u   isocline is either the line Ev u g   or Hv u g  . The 0v   isocline cuts the 

line Ev u g   in ( , )E Eu v , with 1( )E K Eu F g   , and the line Hv u g   in ( , )H Hu v , 

with 1( )H K Hu F g   . In case the growth rate was fixed at either Eg  or Hg , we would 

find standard stable manifolds through ( , )E Eu v  and ( , )H Hu v , respectively (see Figure 

2). It is helpful to make the following thought experiment. Suppose that the growth rate 

is first equal to Hg  but suddenly and unexpectedly drops to Eg  (an unexpected tipping 

point). It follows that the economy first jumps to the stable manifold that is approaching 
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( , )H Hu v  but when tipping is observed, the economy jumps to the stable manifold that 

is approaching ( , )E Eu v . In our case, we do not have an unexpected tipping point so that 

the economy will prepare for a decline in the growth rate. As we have seen above in 

(19): if the elasticity of substitution 1   and ecosystem services are initially abundant, 

i.e. 0 0E H , the growth rate Xg  starts close to Hg  and at some point comes down 

and converges to Eg . In Figure 2, this implies that the stable manifold of the system 

(23) starts close to the upper stable manifold in the figure and at some point, it comes 

down and converges to the lower stable manifold in the figure. In any case, the stable 

manifold of (23) lies between those upper and the lower stable manifolds. 

In order to derive results about the time pattern of the discount rate, we take a closer 

look at the phase diagram in Figure 2. We consider the case with 1  , in which the 

economy converges in the long run to the balanced-growth steady state ( , )E Eu v . For 

any point in time t, we can draw the 0v   isocline in the phase diagram in Figure 2 as 

the line ( )Xv u g t  . This line is parallel to, and in between, the two steepest lines in 

Figure 2, which represent Ev u g   and Hv u g  . We also know that over time this 

lien is moving to the left, because Xg  declines over time. If the stable manifold of the 

system (23) starts to the right of this line, it cannot cross this line, because u has to move 

down. This happens for (0) Hu u , but also for (0) Hu u  in case the line ( )Xv u g t   

has already moved sufficiently to the left. However, for (0) Hu u , in case the growth 

rate ( )Xg t  is still close to Hg , so that the line ( )Xv u g t   is only very slowly moving 

to the left, the stable manifold of (23) jumps up close to the upper stable manifold, and 

the economy starts moving up and to the right. Because the economy ultimately has to 

converge to the balanced-growth steady state ( , )E Eu v , it has to cross the 0v   isocline, 

so that v starts moving down, and then it has to meet and cross the line ( )Xv u g t  , so 

that u starts moving to the left. 

We can derive the slope of the stable manifold from the system (23): 

 

(27)  
 

1( ( ) )
.

(1 ( ) / )( )

K

K X

F u v u vdv v

du u F u u g v u u

      
  
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It is immediately clear that when the stable manifold crosses the 0v   isocline, the slope 

is 0, and when it crosses the line ( )Xv u g t  , the slope is infinite. In the last point, u, 

and thus the discount rate ( )KF u , changes direction and starts decreasing after having 

increased first (Figure 2, right-hand side panel). If 1  , so that the economy converges 

in the long run to the balanced-growth steady state ( , )H Hu v , the analysis is basically 

the same, and a mirror of the analysis above. 

 

We can derive an important qualitative conclusion from the phase diagram in Figure 2. 

If the economy starts with sufficiently abundant inputs X relative to capital K, so that 

(0) Hu u , and if substitution of ecosystem services is poor, i.e. 1  , then the discount 

rate declines monotonically over time, i.e. the term structure is declining.  

In order to find the precise time path of the discount rate ( )KF u , we have to solve the 

system (23), in order to find the time path of u. It is not possible to solve the system 

(23) analytically, so that we have to resort to numerical methods. The time paths of the 

growth rate Xg  and the exogenous inputs H and E are given by (19) and (7), with the 

initial conditions 0E  and 0H . Our algorithm fixes and, if necessary, adjusts a time T, 

where the growth rate Xg  has converged close to g*. Then the algorithm calculates 

( )H T  and ( )E T , and uses the steady-state values *u  and *v  from (26) and (21) to 

calculate the approximations of ( )K T , ( )C T  and ( )F T , with (15) and the definitions 

/u F K  and /v C K . With these final values, a standard algorithm for the Ramsey 

optimal-growth model yields the time paths for K and F, and thus for u, and thus for 

the discount rate, given by (21). We could also apply an algorithm directly to the two-

point boundary value problem, but that would amount to the same thing. 

 

For 1  , g* is equal to Eg . This is the case of limited substitutability of ecosystem 

services in production. This is the most important case, since estimates of substitution 

between different factors of production indicate that natural resources and man-made 

inputs are usually poor substitutes, with substitution elasticities between 0.17 and 0.65 

(van der Werf, 2008). We take the same parameter values as in (14). In order to calibrate 

the model to the stylized fact that the average (structural) growth rate has been trendless 

over the past decades (e.g., Jones, 2016), we take initial values for E and H such that 
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0 1X  , according to (16), and (0) 0.99X Hg g , according to (19). Then it follows that 

0 0 0(0) ( , ) / 0.1u F K X K A   , so that the discount rate ( )KF u  is again initially equal 

to 0.03 (for all σ) according to (21), and converges to 0.00245, according to (26). In the 

phase diagram in Figure 2, this means that we start in (0) Hu u  and that we jump to 

the stable manifold close to the point ( , )H Hu v , because the initial growth rate (0)Xg  is 

close to Hg . As long as the growth rate Xg  stays close to Hg , the optimal path hardly 

moves but when the growth rate Xg  starts to decline, the line ( )Xv u g t   moves to 

the left and the optimal path moves to the left and comes down, following the stable 

manifold. The growth rate Xg  of the composite input X converges from the initial 

0.0198 to the steady-state value, which is equal to Eg  (i.e., 0.001). Consequently, the 

discount rate follows the same pattern, starting at 0.03, staying just below 0.03 for some 

time, and converging to 0.0245. Figure 3 and Figure 4 show the graphs for the growth 

rate Xg  and the discount rate ( )KF u , for different values of the elasticity of substitution 

1  . For comparison, we also show the growth rate and the discount rate for a value 

of 1  . For this value, the growth rate Xg  of the composite input X converges to Hg  

(i.e., 0.02), according to (19), and the discount rate converges to 0.03, according to (26). 

Since we start with (0)Xg  close to Hg , the growth rate remains high, and the discount 

rate is almost flat. If man-made inputs can easily substitute for ecosystem services, the 

standard flat discount rate is the right choice in a deterministic setting, but if man-made 

inputs cannot easily substitute for ecosystem services, it is more appropriate to choose 

a declining discount rate. 

The patterns in Figure 3 and Figure 4 are interesting and intuitively clear. If the growth 

rate and the discount rate decrease towards their low steady-state value, they decrease 

faster in case the elasticity of substitution σ is small. In that case, the effect of the low 

growth rate of the ecosystem services is stronger and drives down the growth rate of 

the economy and the discount rate faster. For policy, this implies that if the substitution 

possibilities are very limited, one can start with a discount rate of 3% but this number 

decreases relatively fast in the long term. If the substitution possibilities are better, but 

with the elasticity of substitution σ still smaller than 1, the decrease of the discount rate 

in the long term is slower. 
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Figure 3 Time paths for growth rate: the CES case 

 

 

Figure 4 Time paths for discount rate: the CES case 

 

An important conclusion is that we can get a declining discount rate. Uncertainty is the 

usual argument for the declining discount rate (Gollier, 2002, 2010, 2013; Newell and 

Pizer, 2003; Weitzman, 2007, 2010), but in this analysis it is the effect of the low growth 

rate of ecosystem services that are used in production and cannot easily be substituted. 

 

3. Ecosystem services in utility and production 

We extend the model in the previous section in order to consider ecosystem services in 

both the utility function and the production function. We assume that the ecosystem 
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services providing an amenity value in the utility function grow at the same exogenous 

rate Eg . Therefore, we can denote both types of ecosystem services by E. The Ramsey 

optimal-growth model (1) changes into: 

 

(28)   0

0

max ( ( ), ( )) ,

( ) ( ( ), ( ), ( )) ( ), (0) ,

t

C
e U C t E t dt

K t F K t E t H t C t K K







  


 

 

and the optimal allocation requirements (5) become  

 

(29)  
( , ) ,

( ) ( ) ( ( ), ( ), ( )) ( ),

C

K

U C E

t t F K t E t H t t



  



  
 

 

so that the Keynes-Ramsey rule for the optimal consumption path (6) becomes 

 

(30)  1( ) ( ( ( ), ( ), ( )) ) ( ),CC K CE EC t F K t E t H t g C t      

 

where /CC CC CCU U    and /CE CE CEU U    denote the elasticities of the marginal 

utility of consumption. Again, a transversality condition has to hold. 

Note that (30) implies that the discount rate can be written as 

 

(31)  ,K CC C CE EF g g      

 

where Cg  denotes the growth rate of consumption (see Weikard and Zhu, 2005; Hoel 

and Sterner, 2007). 

We want to allow for substitution between consumption and the amenity of ecosystem 

services in consumer utility, and therefore we follow Hoel and Sterner (2007) and use 

the CES utility function: 

 

(32)  

(1 )
1 1 11

( , ) (1 ) ,
1

U C E C E

 
  
  




   

   
   
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where γ is again the inverse of the elasticity of intertemporal substitution, π denotes the 

relative shares, and ζ is elasticity of substitution between consumption and ecosystem 

services in utility. It is straightforward to derive the two elasticities CC  and CE . The 

result is: 

 

(33)   1, ( ),CC CE CE            

 

where 

(34)  

1

1 1
.

(1 )

E

C E





 

 




 



 


 

 

 

This δ can be interpreted as the value share of the ecosystem services in the consumer 

expenditure. It is generally not constant over time when there is substitutability between 

consumption and ecosystem services in utility. In Hoel and Sterner (2007) and Traeger 

(2011) the growth rates of C and E are fixed, so that δ converges to 0 or 1, depending 

on the elasticity of substitution ζ. However, if the growth rate of C converges to the 

growth rate of E, then δ converges to a number between 0 and 1. 

 

In order to understand the results below, we first focus on the adjusted Ramsey rule for 

this problem, given by (31). Using (33), we can write this as: 

 

(35)     1( ) (1 ( )) ( ) ( ) ( ) ( ) ,K C E C EF t t g t t g t g t g            

 

where δ is given by (34). 

Hoel and Sterner (2007) have essentially the same result, but we regroup the terms in 

order to facilitate a clear interpretation. Equation (35) clearly shows the determinants 

of the discount rate KF  (see also Traeger, 2011). The three terms at the right-hand side 

represent “impatience”, “(full) consumption smoothing”, and “relative price effects”, 

respectively. Note that the welfare at a point in time t not only depends on the produced 

consumption C but on “full consumption”, i.e. C and ecosystem services E, weighted 

by (1 – δ) and δ, respectively. The second term shows that if the full consumption grows 
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fast, the discount rate becomes high, because the marginal value of full consumption 

falls. This is the standard story. The strength of this effect is governed by the elasticity 

of intertemporal substitution 1   (the intergenerational inequality aversion γ). The third 

term shows that if consumption C becomes more abundant than ecosystem services E, 

the relative price of consumption C gets lower, provided it is an imperfect substitute for 

ecosystem services E. The (consumption) discount rate becomes higher. Therefore, the 

growing relative scarcity of ecosystem services provides an additional reason to value 

the future consumption lower and to use a higher (consumption) discount rate. The 

strength of this effect is governed by the elasticity of intra-temporal substitution ζ. 

For a given growth rate of consumption Cg , a decline in the growth rate of ecosystem 

services Eg  has two opposing effects. On the one hand, it slows down full consumption 

growth, and thus lowers the discount rate. On the other hand, it makes consumption C 

relatively more abundant, and therefore increases the (consumption) discount rate. The 

second effect dominates, if the elasticity of intra-temporal substitution ζ is smaller than 

the elasticity of intertemporal substitution 1  . 

 

As in the previous section, we assume that the economy is driven by labour augmenting 

technological change H, with growth rate Hg , but that the ecosystem services, which 

provide intermediate inputs in production, grow at a lower rate Eg . Instead of (7), we 

have to solve the system 

 

(36)  

0

1

0

0

( ) ( ( ), ( ), ( )) ( ), (0) ,

( ) ( ( )) ( ( ( ), ( ), ( )) ( ) ) ( )

( ) ( ), (0) ,

( ) ( ), (0) ,

CE K CE E

H

E

K t F K t E t H t C t K K

C t t F K t E t H t t g C t

H t g H t H H

E t g E t E E

   

  

   

 

 

 

 

where CE  is given by (33) and (34). Note that CE  is function of ( )C t  and ( )E t . 

In this system, some ecosystem services E provide an amenity value to consumers, and 

therefore affect the elasticities of the marginal utility of consumption. Other ecosystem 

services E are a production factor, and thus affect the growth rate of consumption. It 

follows that the ecosystem services E affect the discount rate in two ways. 
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In order to investigate the long-run properties of the system, we can follow the analysis 

of the previous section. In the right-hand side of the second equation of system (23), 

however, the growth rate of consumption in equation (6) changes into the growth rate 

of consumption in equation (36). Furthermore, CE  in equation (36) can be replaced by 

1( )    , according to (33). This leads to the more complicated system 

 

(37)  

 
1 1 1

1

2

( ) (1 ( ( )) / ( ))( ( ) ( ) ( )) ( ),

( ( )( )) ( ( ( )) ( )( ) )
( ) ( ),

( ) ( )

( ) ( 1)( ( ) )( ( ) ),

K X

K E

X X E X H

u t F u t u t g t v t u t u t

t F u t t g
v t v t

v t u t

g t g t g g t g

       



  



   

     
  

  

   

 

 

where δ is given by (34), as a function of C/E. It is a tedious, but straightforward, to 

express the variable C/E in the variables u, v and Xg  (see the Appendix), so that (37) is 

a well-defined system. 

 

As in the previous section, the 0u   isocline is the line ( )Xv u g t  , which is located 

in between the lines Ev u g   and Hv u g   in the (u, v)-plane. We can characterize 

the 0v   isocline by two extreme positions as well. For 0  , the 0v   isocline is the 

same as in the previous section, and for 1  , the 0v   isocline reaches the other 

extreme (because 0 1  ): 

 

(38)  

1

1

( ( ) ), 0,

( ( ) ( ) ), 1.

K

K E

v u F u

v u F u g

  

    





   

     
 

 

Note that the two curves in (38) coincide for 1   , and that both curves in (38) cut 

the line Ev u g   in ( , )E Eu v , with 1( )E K Eu F g   . For 1   , the second curve in 

(38) cuts the line Hv u g   in a point with Hu u , and for 1   , the second curve in 

(38) cuts the line Hv u g   in a point with Hu u , where 1( )H K Hu F g   . Since it 

is reasonable to assume that 1    (Drupp, 2018), we can depict the basic elements 

of the phase diagram in the (u, v)-plane as in Figure 5. 
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Figure 5 Steady states for system (37) with 1    

 

The steady-state version of the extended Ramsey rule becomes: 

 

(39)  
1 1( *) *( ) ( *( )) *,K EF u g g               

 

where δ* denotes the steady-state value of δ. 

Depending on the elasticities of substitution ζ and σ, we can distinguish three cases that 

correspond to the three possible steady states in Figure 5. 

Case 1. If 1   and 1  , Xg  converges to Hg  and δ converges to 0. The steady state 

is the intersection of the first curve in (38) and the line Hv u g  , and the discount rate 

becomes 

 

(40)  ( *) ,K HF u g    

 

which is the case in which it is simply assumed that the economy can substitute away 

from ecosystem services. 

Case 2. If 1   and 1  , Xg  converges to Hg  and δ converges to 1. The steady state 

is the intersection of the second curve in (38) and the line Hv u g  , and the discount 

rate becomes 

 

(41)  1 1 1( *) ( ) ( )( ),K E H H H EF u g g g g g                   
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which is the case in which consumers cannot easily substitute produced consumption 

goods for the amenity value of ecosystem services, although the producers can easily 

substitute away from the intermediate use of ecosystem services in the production. As 

we have shown in Figure 5, for 1   , the second curve in (38) cuts the line Hv u g   

in a point with * Hu u , where 1( )H K Hu F g   , so that the steady-state discount rate 

is lower than in case 1. For 1   , the second curve in (38) cuts the line Hv u g   in 

a point with * Hu u , so that the steady-state discount rate is higher than in case 1 (see 

also Hoel and Sterner, 2007). 

Case 3. If 1  , Xg  converges to Eg  and δ converges to a number δ* between 0 and 

1. The number δ* is determined by ζ and σ and by the steady-state values u* and v* 

(see the Appendix). The steady state is the intersection of the line Ev u g   and a 0v   

isocline in between the two curves in (38). The steady state discount rate becomes 

 

(42)  ( *) ,K EF u g    

 

which is the case where the limited substitutability of ecosystem services in production 

restricts the economic growth. At the end, the substitutability in utility does not matter, 

because the growth rate of the economy in the long run converges to Eg . 

 

In order to study the development of the discount rate over time, we consider the phase 

diagram in Figure 5 more closely. For fixed values of δ between 0 and 1, we consider 

the 0v   isoclines given by 

 

(43)  1 1 1( ( )) ( ( ) ( ) ),K Ev u F u g                 

 

which are positioned between the extremes for 0   and 1   in equation (38). In 

Figure 6, we have depicted the 0v   isoclines for a fixed (0)  and two different values 

of ζ. It is easy to show that the 0v   isocline in equation (43) rotates downwards for an 

increasing ζ. 
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Figure 6 Dynamics of 0v   isoclines for 1

1 1     and 2 1   

 

Note that (0)  in (34) is not predetermined, because (0)C  is not predetermined. It is 

reasonable to assume that initially the value share of ecosystem services in consumer 

expenditure is small, so that (0)  is close to 0, and both corresponding 0v   isoclines 

in Figure 6 are close to the one for 0  . It is clear from (34) that δ is decreasing over 

time if the elasticity of substitution in utility 1  , and that δ is increasing over time if 

1  . It implies that in the dynamical process, not only the line ( )Xv u g t   is moving 

to the right or to the left but also the 0v   isocline is rotating upwards (in case 1  ) 

or downwards (in case 1  ). In cases 1 and 2, the line ( )Xv u g t   starts close to the 

line Hv u g  , and moves towards this line. If we start in (0) 0.1Hu u  , with the 

discount rate equal to 0.03, we cannot immediately jump close to the point ( , )H Hu v , as 

in the previous section, because we have to stay below the 0v   isoclines. This implies 

that the optimal path moves a bit to the left until it is blocked by the line ( )Xv u g t  , 

so that the discount rate initially decreases somewhat. If the elasticity of substitution in 

utility 1  , δ converges to 0 and the 0v   isocline rotates upwards, so that the optimal 

path changes direction, and the discount rate converges to 0.03. Easy substitution of 

ecosystem services in utility implies that the path of the discount rate is close to the one 

we found in the previous section. However, if the elasticity of substitution in utility 

1  , δ converges to 1 and the 0v   isocline rotates downwards, so that the optimal 

path moves down and to the left, and the discount rate declines in the long run to the 

steady-state value given by (41). This shows the relative price effect as was introduced 



 25 

in the previous literature (Weikard and Zhu, 2005; Hoel and Sterner, 2007). In case 3, 

the line ( )Xv u g t   starts close to the line Hv u g   and moves to the left. The 0v   

isocline rotates upwards (in case 1  ) or downwards (in case 1  ), but not all the 

way to the extreme positions in (38). The value share of ecosystem services in consumer 

expenditure δ converges to a long-run value δ* in between (0)  and 0 (in case 1  ), 

or to a δ* in between (0)  and 1 (in case 1  ). These values of δ* can be calculated 

with the expressions in the Appendix. The main difference with cases 1 and 2 is that 

the line ( )Xv u g t   moves to the left, so that the optimal path will come down at some 

point and converge to the steady state ( , )E Eu v . This implies that the relative price effect 

almost disappears in the long run, because the growth rate of consumption converges 

to the growth rate of ecosystem services. In the short run, however, the growth rate of 

consumption is higher than the growth rate of ecosystem services, and a similar effect 

occurs as in cases 1 and 2. If we start in (0) 0.1Hu u  , with the discount rate equal 

to 0.03, we have to stay below the 0v   isoclines. This implies that the optimal path 

starts to move a bit to the left, until it is temporarily blocked by the line ( )Xv u g t  , 

so that the discount rate initially decreases a bit. This effect is small, but it is a little bit 

larger in case 1   than in case 1  , because the initial position of the 0v   isocline 

is a bit lower in the first case. Otherwise, the optimal paths are not much different from 

the one described in the previous section. The production effect leading to a declining 

discount rate dominates the relative price effect in utility. In the next section, we will 

present an example. 

 

We can formulate the following proposition: 

Proposition 3. For the CES production function (15) and CES utility function (32), the 

economy converges to the steady state in which output, consumption and capital grow 

at a common growth rate g*. If the elasticity of substitution in the production 1  , the 

steady-state growth rate of the economy, g*, equals the growth rate of the ecosystem 

services Eg , and the discount rate converges to the steady-state value that is given by 

the standard Ramsey rule Er g   . If the elasticity of substitution in the production 

1  , the steady-state growth rate of the economy, g*, equals the growth rate of the 

technological change Hg . The discount rate converges to the steady-state value that is 
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given by the standard Ramsey rule Hr g   , if the elasticity of substitution in utility 

1  , and converges to the steady-state value that is given by an adjusted Ramsey rule 

1( )( )H H Er g g g         , if the elasticity of substitution in utility 1  . 

If the economy starts with sufficiently abundant inputs X relative to capital K, so that 

(0) Hu u , and if 1   and 1   , then the discount rate declines monotonically over 

time, i.e. the term structure is declining. 

 

In order to present the precise time path of the discount rate in all these cases, we have 

to resort to numerical methods again. We use the same algorithm as in section 2. In the 

next section, we give an example that characterizes the different possible paths for the 

discount rate. 

 

4. Numerical example 

In this section, we present a numerical example for the paths of the discount rate in the 

three cases that we identified in the previous section. For each case, we take the same 

set of parameter values and initial values as in section 2, that is 

 

(44)  
0 0

1.45, 0.02, 0.001, 0.3, 0.2,

1, (0) 0.1, (0) 0.99 .

H E

X H

g g

K X u A g g

        

    
 

 

We choose the share π in the utility function (32) such that the initial value share of the 

ecosystem services in the consumer expenditure (0) 0.2  . Note that this requires an 

iterative process, because (0)  is not predetermined.  The discount rate is initially equal 

to 0.03, according to (21). We take different values for ζ and σ in order to distinguish 

the three cases of the previous section. For σ, we return to the central values of Section 

2.2: 2.5 1    and 0.4 1   . For ζ , we take the mean value and the lowest value 

from the empirical literature (Drupp, 2018): 2.31 1    and 0.86 1   , respectively. 

Combining 2.31   and 2.5   yields case 1. In this case, the ecosystem services are 

perceived to be substitutable in production and consumption. Combining 0.86   and 

2.5   yields case 2, and combining 0.4   with 0.86   and 2.31   yields cases 

3a and 3b, respectively. The iterative process in order to get the initial value (0) 0.2   

yields 0.563   in case 1, 0.133   in case 2, 0.351   in case 3a, and 0.0166   in 
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case 3b. Using the Appendix, it is easy to show that with the last two values of π that 

yield the initial value (0) 0.2  , the steady-state values δ* become 0.304 for 0.86   

and 0.034 for 2.31  . In the phase diagram in Figure 6, the 0v   isocline rotates 

downwards for 0.86   and upwards for 2.31  . It is interesting to note that δ does 

not become larger than 0.304 in case 3ab, so that the relative price effect is small. In 

the long run, the relative price effect almost disappears, because the growth rate of 

consumption converges to the growth rate of ecosystem services. 

 

 

Figure 7 Time paths for the discount rate for different elasticities of substitution 

 

 

Figure 8 Time paths for the value share of ecosystem services 
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Figure 7 shows the time paths of the discount rate. Figures 8 shows the time paths of 

the value share of ecosystem services in consumer expenditure δ in cases 3a and 3b. 

The discount rate starts at 0.03 in all cases. In case 1, the discount rate remains close to 

this level, and the time path is almost flat, because the growth rate is high and ecosystem 

services can be easily substituted in production and in utility. As we have seen in our 

discussion of the phase diagram in Figure 6, initially the discount rate moves down a 

bit, but then it moves up again and converges to the steady-state value 0.03. This is the 

case in which the ecosystem services are perceived to be substitutable in production 

and consumption. 

In case 2, the growth rate also remains high, because ecosystem services can be easily 

substituted in production. In utility, however, the ecosystem services become relatively 

scarce and since we assume on the basis of empirical observations that the elasticity of 

intra-temporal substitution ζ is larger than the elasticity of intertemporal substitution 

1  , the discount rate decreases further. It is interesting to note that it takes a long time 

before the decrease becomes substantial. We have not depicted the full convergence to 

the steady state in this case, which is ( *) 0.025KF u   according to (41). However, it is 

clear that the relative price effect is small, and kicks in only after a long time. 

In case 3, the discount rate declines because the growth rate declines. The cases 3a and 

3b hardly differ. As we have seen in our discussion of the phase diagram in Figure 6, 

initially the discount rate moves down a bit, and a bit more in case 3b than in case 3a 

because of the different starting positions. Then the relative price effect causes the paths 

to move closer to each other. Figure 8 shows how the value share of ecosystem services 

in consumer expenditure δ develops in the two cases, with different steady-state values 

δ* (i.e., * 0.304   in case 3a and * 0.034   in case 3b). When the paths for the two 

discount rates meet in these cases, the effect of the scarcity of ecosystem services in 

production dominates the relative price effect in utility, and the paths come down and 

stay close together. In the long run, the discount rate converges to the steady-state value 

0.00245, according to (42). 

 

5. Conclusion 

This paper considers the discount rate in case ecosystem services are important for the 

production but cannot grow at the same rate as the usual drivers of economic growth, 

such as technological change. The literature on the discount rate mostly assumes that 
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the growth rate is given but in case ecosystem services are important for production and 

cannot be easily substituted, growth of the economy will be restricted and the discount 

rate will decline. 

This paper considers the ecosystem services in production and directly in utility, with 

in both cases high or low elasticities of substitution. If substitution is easy, the discount 

rate in the long term follows the standard Ramsey rule with a high growth rate. On the 

balanced-growth path, discounting over any time horizon occurs at a constant rate. If 

substitution in production is easy but substitution in utility is not easy, the relative price 

effect from the previous literature shows up. Growing scarcity of ecosystem services 

requires an adjusted Ramsey rule for the discount rate. Most importantly, however, if 

substitution in production is not easy, the discount rate declines towards a low value 

given by the standard Ramsey rule with a low growth rate. Moreover, in this context 

the relative price effect is small and almost disappears in the long run. 

In order to analyse these issues, this paper uses a Ramsey optimal-growth framework, 

with both a CES utility function and a CES production function. The balanced-growth 

steady states are derived, the system dynamics are characterized in phase diagrams, and 

a numerical procedure is used to calculate the paths of the growth rate and the discount 

rate in a calibrated model. In this way, the paper compares, across different scenarios, 

not only the steady-state values of the discount rate but also the paths towards these 

steady-state values. 

The main result of the paper is that the appropriate discounting rule crucially depends 

on the role of ecosystem services in production. If the ecosystem services can be easily 

substituted, growing scarcity will not slow down the growth from technological change, 

and the discount rate can be based on the current balanced-growth rate of consumption. 

However, if the ecosystem services cannot be easily substituted, and if the growth rate 

of ecosystem services is low, future growth will slow down and the discount rate will 

decline towards a low value. This main result implies that the role of ecosystem services 

in utility is not very strong. In the case in which the economy can achieve a high growth 

rate in the long term, the previous literature has already pointed out the relative price 

effect that occurs if the growth rate of the ecosystem services and the elasticity of 

substitution in utility are low. However, we show that this effect is not large and only 

occurs after a long term. In the case in which the economy cannot achieve a high growth 

rate in the long term, we show that this relative price effect hardly plays a role. These 

are theoretical results. In practice, it is necessary to identify production sectors where 
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ecosystem services are essential, and to determine the growth rates and the elasticities 

of substitution. This is a topic for further research. 

The previous literature has shown extensively that a declining discount rate may also 

result from the introduction of several forms of uncertainty. This paper has left out this 

uncertainty, but it is clear that many arguments point in the same direction, and thus 

support the idea of a declining discount rate. This paper has specifically focused on the 

role of a limited availability and substitutability of ecosystem services in production. A 

declining discount rate is very important for the cost-benefit analyses with a long time 

horizon, because a flat discount rate would make the costs and benefits in the far future 

hardly count. 

This paper assumes an exogenous (low) growth rate for ecosystem services, but ignores 

a possible feedback effect of production and consumption (and thus emissions into the 

natural environment) on the availability of ecosystem services. This is a topic for further 

research as well. Moreover, this paper contains interesting simulations to extend and 

illustrate the theoretical results, but calibrations with real data are needed in order to 

quantify the policy advice. This is also a direction for future research. 
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Appendix: Specification of δ as a function of the variables of system (37) 

 

According to (34), δ is a function of /C E : 

 

(A.1)  
1

.

(1 )( / )C E








 




 

 

 

Since / ( / )( / )( / ) ( / )( / )C E C K K F F E v u F E  , we have to show that /F E  is a 

function of the system variables. From (15), it follows that: 

 

(A.2)  
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and from (16) and (15), it follows that: 
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(A.3)  

1
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With (21) and the definitions of the growth rates, this implies that: 

 

(A.4)  
( ) ( )

1 1 .K E K E
X E H

F u EF F u EF
g g g

u F u F

   
       
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Combining (A.2) and (A.4) yields: 

 

(A.5)  
11 ( )

1 .H X K

H E

C v F Av g g F u

E u E u g g u
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Q.E.D. 
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