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Climate change is likely to trigger abrupt and potentially persistent changes in the structure 
and function of marine ecosystems1,2. Such ‘regime shifts’3 threaten the livelihoods of millions 
of people reliant on small-scale fisheries4. Yet, it is largely unknown how resource users cope 
with regime shifts, their uncertainty, and impacts. Here, we assess the potential for local col-
lective action to avert uncertain, yet catastrophic, regime shifts. We conducted behavioural 
economic experiments with small-scale fishers (n=256) using a framed, dynamic common-
pool resource game to test the effect of different degrees of uncertainty about the presence of 
climate-induced thresholds on exploitation patterns. Results from four communities in the 
Colombian Caribbean show that groups facing uncertain thresholds are likely to adapt in the 
sense that they sustain higher stock levels in order to avoid a regime shift. However, catch 
inequalities in the game, and community-level attributes appear to mitigate or even eliminate 
this effect; illustrating the critical role contexts play for behaviour. Our results suggest a more 
positive outlook regarding the inherent uncertainties of climate change compared to experi-
mental evidence overwhelmingly proposing a negative relationship between uncertainty, col-
lective action, and sustainable resource use5–8. Instead, we conclude that in certain circum-
stances uncertainty can help protect the commons. 

Thresholds have been identified in a large variety of systems and scales, including climate9 and marine 
ecosystems10. Although climate change alone is responsible for many changes in both structure and 
function of marine ecosystems1, regime shifts often occur in conjunction with other more local activ-
ities such as fishing or agriculture3. Examples of marine regime shifts include the collapse of fisheries, 
hypoxia, and coral transitions11, and their frequency and intensity is expected to increase with climate 
change2. These regime shifts have been established both theoretically and empirically12 but the poten-
tial for any specific ecosystem to exhibit thresholds is uncertain. Yet, when regime shifts occur they 
can substantially impact ecosystems son which local communities heavily rely for food or clean water3.  

 
* This discussion paper, in the same version, is also vailable at SSRN: https://ssrn.com/ab-
stract=3468677 or http://dx.doi.org/10.2139/ssrn.3468677. 
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Here, we investigate how groups of fishers, heavily relying on local marine ecosystems, respond to 
different degrees of uncertainty (certainty, risk, and ambiguity) regarding the existence of a climate-
induced threshold below which the productivity of their shared fishing ground would drastically re-
duce. For this purpose, we designed a controlled field experiment in the form of a framed, dynamic 
common-pool resource (CPR) game. Our insights offer indications about the importance of risk as-
sessments for affected communities13, and contribute to the sparse empirical literature about decision-
making in ambiguous environments8,14. Our study extends the emerging body of experimental research 
on collective action around shared resources in relation to uncertainty, and specifically ambiguity, 
about critical thresholds and regime shifts motivated by the climate change challenge7,8,15–17. 

Empirical evidence suggests a negative influence of uncertainty on cooperation and the sustainable 
use of shared resources. Experimental research in static5,18,19 and dynamic6 settings has shown that 
uncertainties around the availability or regeneration of a CPR leads to its unsustainable use; and thresh-
old impact uncertainty7,16 as well as threshold location uncertainty7,17 leads to the breakdown of coop-
eration around public goods. Communication seems to play a critical role. In the absence of large 
uncertainties about the threshold’s location, communication can drastically increase the chances of 
preventing negative outcomes, as it allows participants to coordinate their actions around the (rela-
tively well-known) threshold location7,20. CPR experiments about endogenously driven regime shifts 
in which communication was allowed, point to the same mechanism: a certain or very likely threshold 
can mobilize collective action and serve as focal point around which people coordinate their actions 
to sustain the shared resource15,21. 

These studies, and generally the bulk of behavioural evidence, is based on lab studies with ‘WEIRD’ 
participants, i.e. students from Western, Educated, Industrialized, Rich, and Democratic countries22. 
Mounting evidence, however, highlights how behaviour can differ strongly between (sub-)populations 
and various socio-cultural and ecological contexts23,24. It is therefore imperative to conduct field ex-
periments in different communities. To our knowledge, the effect of uncertainty (in the form of risk) 
about the existence of thresholds on collective action and CPR use patterns has so far only been 
investigated in the lab15, and the effect of ambiguous thresholds only in public goods settings, and also 
only in the lab8. We brought our game to the Colombian Caribbean coast and played it with small-
scale fishers from four different communities (see Supplementary Information 1 (SI)). All communities 
rely on fishing as the primary source of livelihood and have been exposed to over-exploitation and 
marine regime shifts such as fish and mangrove die-offs partially driven by climate change. 

In our game, groups of four shared a fishing ground (Figure 1a and Methods), with an initial and max-
imum stock of 50 fish. Over a number of rounds, unknown to the players, each player decided pri-
vately how much fish to catch. Communication was allowed. Each fish was worth COP 500 (about € 
0.15). The players knew that the more fish they catch, the less would be available in future rounds. At 
the end of each round, the fish stock regenerated according to its size (Figure 1b) and was announced. 
In Stage 1 of the game (6 rounds), all groups played the game without a threshold (baseline, Figure 1b, 
lower graph). In Stage 2 (10 rounds), apart from the groups that were randomly allocated to continu-
ously play baseline (control), groups were told that a climate event had definitely led, or could lead, to 
a drastic reduction of the stock’s productivity below a certain level (Figure 1b, upper graph). Hence, 
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the threshold was introduced exogenously, but players could avoid (or reverse) the regime shift by 
keeping the stock above the threshold.  

 
Figure 1. Experimental design. a) Sketch of the set-up of our controlled pen-and-paper field experiment, which was 
the same for all treatments: groups of four small-scale fishers shared a fishing ground. They were seated around a table, 
and face-to-face communication was allowed. At the end of each round, the fish stock regenerated according to its size 
(see stock dynamics in b). The only piece of information the players received was the new stock size at the beginning of 
each new round. b) The graphs show the relationship between the size of the fish stock and its reproduction as used in 
the experiment. The lower graph represents the stock dynamics without a threshold (baseline, Stage 1 of the game and 
control in Stage 2). The upper graph represents the stock dynamics with a threshold at a level of 28. The arrow indicates 
the probability with which a climate event (in any given round in Stage 2 of the game) could lead to a drastic and long-
lasting change in the stock dynamics in the form of a threshold (see Fig. S3 for an overview about when the climate event 
has happened for each group). The three different treatments (threshold, risk, and ambiguity) and the baseline case are indicated 
in italics. See SI2.1 for instructions and Fig. S2 for the visualisations used to communicate the stock dynamics to the 
players. Illustration in a) by E. Wikander/Azote. 

 
Using three treatments, we tested whether exploitation patterns differ depending on whether there is 
certainty (known probability of 1.0), risk (known probability of 0.5) or ambiguity (known probability 
range: 0.1-0.9) about the threshold. In particular, we were interested 1) whether groups sustain higher 
stock sizes in the face of a (potential) threshold (in order to avoid the potential regime shift) compared 
to a situation without a threshold (baseline), and 2) whether the degree of threshold uncertainty affects 
overall sustained stock levels. Hence, we focus our analysis on overall sustained stock sizes. Due to 
non-normally distributed data, we use median stock sizes (across all rounds per group) and rely on 
non-parametric tests. See SI3.1 for details on statistical analysis. 

Fishers playing the ambiguity treatment sustained higher median stock sizes (Figure 2). Comparing each 
treatment with baseline (no threshold) shows that the higher the uncertainty, the more distinct the 
differences in distribution of median stock sizes. Statistical analysis (set of Mann–Whitney–Wilcoxon 
rank-sum tests (MWW)) shows that differences in median stock sizes between baseline and threshold and 
baseline and risk are not significant (see Table S4 for results), but we find significant differences between 
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baseline and ambiguity (MWW, P=0.0822). Ambiguity groups also spend on average significantly more 
time above a stock size of 28 (MWW; P=0.064), and deplete the stock significantly less (five depletion 
cases in baseline, and none in ambiguity; Fisher’s exact test (FET), P=0.043) compared to baseline groups. 
(Table S5 shows comparisons between baseline and the other treatments).  

We do not find differences in median stock levels depending on the different degrees of uncertainty 
(see Table S6 for test results). Moreover, the degree of uncertainty does not seem to play a role in 
determining the likelihood of groups crossing the potential threshold at some point during the game 
(FET; P=0.934), or cases of depletion (FET; P=0.220). 

 

 
Figure 2. Treatment effects. Comparison of median stock size (after catch, before regeneration) distributions. Individual 
graphs show the distribution differences between (a) baseline and threshold treatment, (b) baseline and risk treatment, and (c) 
baseline and ambiguity treatment (n=16 for each distribution). Red lines indicate (potential) threshold. The yellow lines indi-
cate the median stock size for baseline (27). The blue line indicates in (a) the median stock size of the threshold treatment 
(29.25), in (b) of the risk treatment (31), and in (c) of the ambiguity treatment (31). Moving from a) to c) median treatment 
stock size levels increase and distribution narrows. All observations are from Stage 2. 

 

On the backdrop of growing evidence about the importance of context for behaviour, we compare 
game outcomes between the four communities (community A-D, Figure 3). Whereas median group 
stock sizes in Stage 1 (where treatment effects were absent) do not differ between communities (Krus-
kal-Wallis test (KW), df=3, c2=5.417, P=0.144), they do in Stage 2 (KW, df=3; c2=15.671, P=0.0013). 
See Table S7 and Table S8 for comparisons for other variables. This difference can be explained by 
significant differences with respect to how often groups achieved the highest regeneration rate (KW, 
c 
2
St2=24.617, PSt2=0.0001), as well as striking differences in cases of depletion (FET, PStage1=0.181, 

PStage2=0.001): 44% of the groups in community B (19% in Stage 1), 25% in community D (6% in Stage 
1), and none in community A and B (in neither stage) depleted in Stage 2 (Figure 4). All groups that 
depleted in Stage 1 also depleted in Stage 2. 
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Figure 3. Community differences. Left panels: box plots (N=16 per box) of median stock sizes across communities in 
Stage 1 (upper panel) and Stage 2 (lower panel). Right panel: box plots (N=16 per box) of Gini coefficient of group catch 
(dispersion of total catch within each group) in Stage 1 (upper panel) and Stage 2 (lower panel). The differences between 
communities was significant for both stages (KW, df=3; c2Stage1=7.85, PStage1=0.0492; c2Stage2=14.20, PStage2=0.0026). 

 
It appears from Figure 4 that the treatment seemed to matter more or less for the communities. For 
example, in community A, no matter the treatment, all groups sustained higher stock levels and in 
most instances above the threshold. In community D, on the other hand, all ambiguity groups stayed 
above the threshold. Moreover, there were significant community differences in whether a group 
crossed the (potential) threshold at some point during the game (FET, P=0.005). In community B 
90% of the groups crossed the potential threshold (Figure 3), in community A it was only 25%, in 
community C 50%, and in community D 33%.  

Community differences in exploitation patterns are likely due to how well groups cooperated (see 
SI3.2.1 for other potential explanations). As proxy for cooperation we use the Gini coefficient of 
group catch (dispersion of total catch within each group), assuming that catch equality is based on 
players using the opportunity to communicate to agree on collective exploitation levels (SI3.3). The 
Gini coefficient was quite low overall (Stage 1: 0.097±0.093; Stage 2: 0.081±0.098, Figure 3, right 
panels) and did not differ significantly between both stages (MWW, P=0.155), but there were signifi-
cant differences between communities for both stages (Figure 3).  

We find indeed a positive relationship between equal sharing of catch and sustainable resource use 
(Figure 4). Groups that depleted the stock in Stage 2 had significantly lower Gini coefficients than 
groups that did not (MWW, P=0.008), and threshold, risk and ambiguity groups that sustained the stock 
above the threshold throughout Stage 2 had significantly lower Gini coefficients than groups that 
crossed the threshold at some point (MWW, P<0.0001). Interestingly, groups with very low Gini 
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coefficients in Stage 1, i.e. with a positive experience, have a significantly lower Gini coefficient in 
Stage 2 (MWW, P<0.0001) and vice versa (MWW, P<0.0001).  

 

 
Figure 4. Stock size patterns over time. a) shows time series of intermediate stock size (after catch, before re-growth) 
over time for each group per treatment (vertical variation) and place (A-D; horizontal variation) in Stage 2. The colour 
coding indicates the overall Gini coefficient of group catch (Stage 2). The figure shows that in community A 25% of the 
groups crossed the potential threshold, in community B it was 90%, in community C 50%, and in community D 33%; 
these differences are significant (Fisher’s exact test, P=0.005). The figure also shows that in community A and B no group 
depleted and in community B 44% of the groups (19% in Stage 1) and 25% in community D (6% in Stage 1). Note, no 
group in community A and B depleted either in Stage 1 and all groups that depleted in Stage 1 also depleted in Stage 2. 
See Fig. S3 for indications whether and when the climate event has happened for all risk and ambiguity treatment groups.  

 

To bring these results together and to determine average treatment effects given group- and commu-
nity-level factors, we fitted a multiple linear regression model with ‘median stock size’ as response 
variable, while controlling for treatment, community, and group differences (Table 1A, left). The re-
sults corroborate that ambiguity groups are more likely to sustain higher median stock sizes but that 
indeed community effects can mitigate or even eliminate the treatment effect. For example, the effect 
of community B on median stock sizes is likely to be negative, and stronger than the positive effect 
of ambiguity. However, the negative effects of community D, are likely not to be stronger than the 
effect of ambiguity. We also find that risk groups sustain higher stock sizes Group differences play a 
significant role as well; groups that achieved higher median stock sizes in Stage 1 are more likely to do 
so too in Stage 2. 
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Table 1. Regression analysis. Estimated average treatment effects based on community, and group differences (median 
stock size in Stage 1 and/or Gini coefficient in Stage 1, independent of treatment), see SI3.4 for details. A) left: model 
with ‘median stock size’ as response variable (N=64, R2=0.656; P<0.0001; see also Table S9); right: model with ‘percentage 
of rounds above threshold’ as response variable (N=64, R2=0.566; P<0.0001; see also Table S10). B) (threshold treatment as 
‘reference group’) left: model with ‘median stock size’ as response variable (N=48, R2=0.645; P<0.0001; Table S11); right: 
model with ‘percentage of rounds above threshold’ as response variable (N=48, R2=0.553; P<0.0001; Table S12). 

 A) B) 

 Median stock size Percentage of rounds 
above threshold Median stock size Percentage of rounds 

above threshold 
Threshold 2.223 0.0912 -- -- 

 (0.414) (0.448) -- -- 

Risk 5.940+ 0.222* 3.142 0.0983 
 (0.067) (0.040) (0.272) (0.375) 
Ambiguity 7.575** 0.204* 5.043* 0.113 
 (0.005) (0.044) (0.026) (0.265) 
B -10.22** -0.359** -10.67** -0.466*** 
 (0.004) (0.004) (0.005) (0.000) 
C -1.198 -0.0545 -0.943 -0.0478 
 (0.463) (0.514) (0.642) (0.640) 
D -6.907** -0.185* -4.154+ -0.146 
 (0.005) (0.035) (0.091) (0.145) 
Median/Mean 
Stock St 1* 0.685*** 0.0148* 0.419+  

 (0.000) (0.025) (0.059)  
Gini St 1  -0.874* -21.49 -1.387** 
  (0.044) (0.270) (0.002) 
Constant 8.063* 0.377+ 19.04* 0.949*** 
 (0.048) (0.060) (0.014) (0.000) 
R2 0.656 0.566 0.645 0.553 
Adjusted R2 0.613 0.502 0.583 0.487 
Observations 64 64 48 48 

p-values in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
* Median Stock St 1 and Gini St 1 are negatively correlated; Pearson's r = -0.54. Mean Stock Stock St 1 was used for the 
model with ‘Percentage of rounds above threshold’ as response variable. 
 

To test the effect of the degree of uncertainty on exploitation patterns, while controlling for commu-
nity and group effects, we fitted in a last step of this analysis two models using threshold treatment 
groups as reference group (i.e. excluded baseline groups) with the response variables ‘median stock 
size’, and ‘percentage of rounds above threshold’ (Table 1B). We find that groups confronted with 
ambiguous thresholds are more likely to sustain higher median stock sizes compared to groups that 
face thresholds with certainty. Risk is not significant. As above, for median stock sizes, community B 
is likely to have a negative and stronger effect than ambiguity, the effect of community D is likely to 
mitigate the ambiguity effect, and group differences are likely to be positive. However, neither ambiguity 
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nor risk seem to explain the percentage of rounds a group spends above the threshold, indicating the 
relative insignificance of precise risk assessments. 

Our results contrast previous experimental evidence5–8. One explanation can be found in our particular 
game design. Our players do not receive direct feedback about their group members’ actions, they 
only get to know the new stock size at the beginning of each round. Uncertainty masks this feedback 
even more. Whereas in the threshold treatment, there is little doubt in the mind of a player that sudden 
and unexpected low stocks are the result of others having extracted much, in the risk and ambiguity 
treatments, players could instead believe that sudden low stocks are due to the climate event. The 
latter would not erode trust in group members and the willingness to cooperate, which is commonly 
conditional25,26. Additionally, here, groups can use communication to coordinate their actions. This 
can be instrumental for sustainable CPR use15,21. Both these elements bring our experimental design 
closer to real settings in small-scale commons dilemmas. 

Our results suggest that communicating potential regime shifts and their consequences at the local 
level can trigger adaptation, however, how strong seems to depend on the community in question. In 
the Caribbean, this might be especially important in periods of draught or ENSO years when hypoxic 
and fish-die-off events are more likely to occur27,28. We did not find a relationship between the degree 
of threshold uncertainty and whether or not groups cross the threshold at some point, neither with 
respect to the percentage of time they spend above the threshold during the game. This suggests to 
place less focus on determining more precise likelihoods of thresholds but rather focus on identifying 
what variables have thresholds, and their potential consequences. These insights are particularly im-
portant for regions where relevant ecological data is sparse but livelihoods can be severely threatened 
by regime shifts. In such contexts, it seems more effective to invest in governance arrangements 
providing collective decision-making fora, as previously suggested by a similar CPR lab experiment15. 
Furthermore, when considering such local governance and adaptation plans, our findings highlight 
the importance of acknowledging context-dependencies as well as the attributes of the sub-popula-
tions in question. 

Gaining insights into potential behavioural responses of individuals and communities facing uncertain 
ecological thresholds is pivotal for dealing with climate change impacts. Our results show that uncer-
tainty around critical climate-induced thresholds can protect shared resources. This is in stark contrast 
with previous experimental evidence that overwhelmingly suggests a negative relationship between 
uncertainty, collective action, and sustainable resource use5–8. Hence, our study provides hopeful in-
sights given the irreducible uncertainties inherent to climate change, and environmental change more 
broadly. 

Methods  
The CPR fishery game was performed with 256 small-scale fishers from four communities (see Fig. S1 for map) along the 
Colombian Caribbean coast in February 2016. In each community, we spent two days running four groups (with 4 players 
each) in parallel in the morning and afternoon. The recruitment was through community leaders that recruited fishers in 
each community before we arrived. We asked the leaders to try to include fishers from different ages and that use different 
fishing methods. At the beginning of each session, we briefly introduced ourselves, and provided an overview (including 
purpose and duration) of the activity. We clarified that the use of money in the game was not a payment for attendance 
but to make decision-making realistic. Once the participants signed the consent forms, one experimenter explained the 
game to all 16 participants before they were randomly allocated to four groups with 4 participants each. We made sure 
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that members from the same household were not in the same group and we also tried as well as possible to avoid that 
fishers from the same fishing crew were in the same group. Before starting with the actual game, each group played several 
practice rounds to become familiar with the rules and dynamics of the game. We used a rotation scheme for the experi-
menters to avoid the experimenter effect and made sure that groups could not overhear each other. 
In the game, groups (N=64) of four players exploited a common fishing ground with an initial and maximum stock of 50 
fish (see SI2.1 for instructions). Since communication was allowed, non-binding agreements could emerge (e.g., about 
catch rates), but decisions were private and kept confidential. At the beginning of each round, the new fish stock level (x) 
was announced. In Stage 1 of the game (baseline, Figure 1b, lower graph), the fish stock regenerated with 0 fish for x Î 
{0,1,…,4} È {45,46,…,50}, 5 fish for x Î {5,6,…,19} È {35,36,…,45}), and 10 fish (corresponding to the maximum 
sustainable yield; MSY) for x Î {20,21,…,34}) (see Figure 1). In Stage 2, groups were randomly assigned to continuously 
play baseline or one of the following three treatments with a renewed stock of 50 fish: threshold, risk, and ambiguity (16 groups 
per treatment, 4 per community). Baseline groups played the exact same game as in Stage 1 (control). In the three treatments, 
players were told that a climate event had definitely led (threshold) or could lead (risk and ambiguity) to a permanent reduction 
of the reproduction rate to 1 fish for stock levels below 28 (Figure 1b, upper graph). For all other stock sizes the repro-
duction rate remained the same as in Stage 1. The difference between risk and ambiguity was in whether the players knew 
the exact probability (0.5 for risk) of the event occurring in each round or only the probability range (0.1-0.9 for ambiguity). 
Fish that remained in the common pool at the end of either stage had no monetary value for the players. The game builds 
on a lab experiment originally designed by Lindahl et al.21, and further developed by Schill et al.15. We modified the original 
design for the field and to test the research question at hand. 
All decisions were made on individual protocol sheets, collected by an assistant at the end of each round. A fifth experi-
menter calculated the new stock size for all groups and provided this information to the assistants on a note, which was 
handed over to the experimenters of each group. The experimenter informed the group about the new stock size at the 
beginning of each round, which allowed players to deduce information on group members’ decisions, for example, whether 
everyone followed the group agreement in case there was one. Communication was allowed, limited to two minutes before 
participants made their decision. Each caught fish was worth COP 500 (about € 0.15). The participants had full information 
about the relationship between the stock size and its reproduction. 
The game entailed two stages. All groups played both stages. Stage 1 lasted six rounds and Stage 2 ten rounds, unless a 
group depleted the stock earlier at which point the game was stopped. The number of rounds was unknown to the players, 
to avoid the end-of-game-effect. Apart from the changes in the stock dynamics, conditions and rules remained unchanged. 
In the risk and ambiguity treatment, players were also told that the climate event is unpredictable; nobody knows whether 
and when it will happen, including the experimenters and assistants. They knew, however, that the probability of the event 
occurring in future rounds was constant (see SI2.3). Each treatment was run four times in each location.  
Experimenters and assistants collected observational data during the game following a structured form on aspects such as 
whether or not players communicated and what kind of agreements they made, if any. After the game, each player took 
part in a risk and ambiguity attitude elicitation task29 (see SI2.4) and was interviewed following a structured form (see 
SI2.5). In the meantime, the number of fish caught by each player was calculated, and the respective amount in cash was 
paid out privately.  
In addition to a show-up fee of COP 15,000 (about € 4.20), average individual earnings were COP 19,514 (about € 5.50) 
with a minimum of COP 3,000 and a maximum of COP 40,000, paid privately at the end of each session. Total average 
earnings were higher than the median income our participants make on a normal day (see Table S1). For comparison, the 
daily wage in 2016 in this region was about COP 23,000. 
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1. Communities  
We ran the experiment in four fishing communities along the Colombian Caribbean coast, see Fig. S1. All 
communities have been exposed to over-exploitation and marine regime shifts such as fish and mangrove 
die-offs partially driven by climate change, but to different degrees. All communities rely on fishing as the 
primary source of livelihood but they differ with regard to where they concentrate their fishing on (Fig. S1): 
open sea (A), large river delta (B), or within an estuarine lagoon (C and D). This translates to different 
ecological dynamics and disturbances that the fishers face in everyday life, as well as heterogeneity in fishing 
styles. Table S1 provides descriptive statistics on a set of characteristics of the participants of each 
community, derived from post-experimental surveys (see SI2.5). 
 

 
 
Fig S1. Field work area. Map indicating the location of the four communities along the Colombian 
Caribbean coast where we conducted the field experiments in February 2016. The labels A-D indicate the 
order in which we visited the communities, see SI2 for details.  
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Table S1. Descriptive statistics of characteristics of participants for each community: mean (standard 
deviation); range (min-max); N. See 2.5 for information on post-experimental survey on which this 
information is based.  

A B C D All Kruskal-
Wallis test 

Age 32.6 (14.4); 
16-74; 
N=62 

53 (12.6); 
21-75; 
N=62 

42.2 (14.8); 
19-83; 
N=63 

43.3 (13.6); 
19-72; 
N=64 

42.8 (15.6); 
16-83; 
N=251 

c2 = 55.7  
P = 0.0001a 

Formal education1 3.1 (0.7);  
2-4; N=61 

2.1 (0.6);  
1-3; N=57 

2.5 (0.7);  
1-4; N=55 

1.9 (0.6);  
1-3; N=56 

2.4 (0.8);  
1-4; N=229 

c2 = 74.5  
P = 0.0001b 

% of women 5% 8% 0% 0% 3% c2 = 9.4  
P = 0.0244 

Median income 
(COP) normal day 

30,000;  
N=60 

40,000; 
N=62 

25,000;  
N=64 

20,000; 
N=63 

30,000; 
N=248 

c2 = 30.8  
P = 0.0001 

Gini coefficient 
income normal day 

0.49; 
N=63 

0.44; 
N=63 

0.44; 
N=64 

0.34; 
N=64 

0.43; 
N=254 

c2 = 253.0  
P = 0.0001 

Median income 
(COP) bad day2 

0;  
N=60 

5,000;  
N=62 

3,250;  
N=62 

2,000;  
N=63 

2,000;  
N=247 

c = 20.3  
P = 0.0001 

Median income 
(COP) good day 

100,000; 
N=60 

106,500; 
N=62 

85,000; 
N=63 

50,000; 
N=63 

90,000; 
N=248 

c2 = 32.2  
P = 0.0001 

% fishers that fishes 
in groups 

98%;  
N=62 

77%;  
N=62 

82%;  
N=64 

62%;  
N=63 

80%;  
N=251 

c2 = 26.5  
P = 0.0001 

Median group size 
fishing 

7;  
N=61 

5;  
N=48 

3;  
N=52 

2;  
N=38 

4;  
N=199 

c2 = 126.3  
P = 0.0001 

% fishers that goes 
with same crew 

90%;  
N=61  

98%;  
N=47 

83%;  
N=53 

89%;  
N=38 

90%;  
N=199 

P > 0.1 

Experienced 
dramatic change3 

0.69 (0.47); 
N=61 

0.77 (0.42); 
N=61 

0.83 (0.38); 
N=64 

0.86 (0.35); 
N=64 

0.79 (0.41); 
N=250 

c2 = 6.3  
P = 0.0993 

Expect dramatic 
change4 

0.88 (0.34); 
N=24 

0.87 (0.36); 
N=30 

0.64 (0.48); 
N=56 

0.82 (0.38); 
N=57 

0.78 (0.41); 
N=167 

c2 = 9.3 
P = 0.0259 

Note, one individual each in A and B were excluded for these summary statistics, as it turned out after they have played 
the game that they are not small-scale fishers. They earn on a normal day more than COP 400.000. 
1 Categorical variable: 1 = none; 2 = basic school education (5 yrs.); 3 = high school (11 yrs.); 4 = university. 
2 To many fishers a bad day means no catch at all, which is the case for 118 fishers in total. For 75% of those this 
happens several times a week (mostly in A and D). 
3 Binary variable; survey question: Have you experience at any time a sudden, persistent and dramatic change in the 
amount of fish? We refer here to something more acute than a change due to seasonality where you have noticed that 
a species in particular has diminished or disappeared for a long period of time. 
4 Binary variable; survey question: Do you expect other sudden and persistent changes in the abundance of fish or 
other ecosystem aspects in the future (e.g. mangrove, birds)? 
a According to a set of pairwise Mann–Whitney–Wilcoxon test, participants from A are significantly younger and 
participants from B are significantly older than participants from all other communities (P<0.000 for all tests).  
b According to a set of pairwise Mann–Whitney–Wilcoxon test, participants from A have significantly higher 
educational levels than participants from all other communities (P<0.000 for all tests); participants from B have 
significantly lower educational levels than participants from C (P=0.0011); participants from C have significantly higher 
educational levels than participants from D (P<0.000). 
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2. Experimental design and procedure 
2.1 Instructions  
Available upon request: caroline.schill@beijer.kva.se. 
 
2.2 Visualisation of resource dynamics 
 

 
 

Fig S2. Resource dynamics. Relationship between the size of the fish stock and its reproduction as shown 
to the participants. (Left) represents the stock dynamics without a threshold (baseline). (Right) represents 
the stock dynamics with a threshold at a stock size of 28. The visualisations for the participants were 
printed on different coloured sheets to provide a visual difference (baseline in green and dynamics with 
threshold in red). 
 
2.3 Visualization and communication of risk and ambiguity treatment 
In the risk treatment, we showed our participants five green and five red stones. The red stones symbolized 
the climate event. In front of their eyes, we mixed the stones in an urn and in each round, we drew one 
stone without revealing its colour. If it was red, the climate event occurred in that round, leading to a change 
of the reproduction rate below a stock size of 28 until the end of the game (as the event is long-lasting). If 
the stone was green, the reproduction rate stayed the same (as in baseline). No matter the colour of the stone, 
we continued drawing in each round. 
In the ambiguity treatment, we followed the same procedure but instead of starting off with 5 stones of both 
colours, we showed them 10 green and 10 red stones. In front of their eyes, we put 1 red and 1 green stone 
into the urn. We then mixed the remaining 18 stones in a second urn and added 8 random stones to the 
first urn without revealing the stones’ colour neither to the participants nor the experimenter and assistants. 
This was achieved by using a non-translucent fabric cloth, so neither experimenters nor participants could 
see the colours of the stones being moved from one urn to the other. 
With this transparent approach to communicating and visualizing the uncertainties involved in the game, 
we made clear that we did not decide on the event occurring ex-ante, i.e., there were no information 
asymmetries between the players and experimenters to guarantee credibility and to not affect behaviour 
(Chow and Sarin 2002). The probabilities were constant over time, i.e., each stone that was picked was 
thrown back into the urn. 
 
2.4 Risk and ambiguity preferences elicitation task 
To elicit risk and ambiguity attitudes of our participants, we made use of the monetarily incentivized risk 
and ambiguity decision tasks designed by Cardenas and Carpenter (2013). We chose these tasks, as they 
have been implemented and evaluated extensively in the Latin American context, including people with 
varying levels of numeracy and literacy. Following the original protocol closely, to measure aversion to risk, 
we asked our participants to choose between six binary lotteries in which the chances of receiving a high 
payoff are the same as receiving a low one (50-50 chance). To measure aversion to ambiguity, we asked them 

Tamaño del 
cardumen

Reproducción en la 
siguiente ronda

0 - 4

5 - 19

20 - 34

35 - 45

46 - 50

Tamaño del 
cardumen

Reproducción en la 
siguiente ronda

0 - 4

5 - 27

28 - 34

35 - 45

46 - 50
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to choose between another set of six lotteries in which the chances of receiving a high versus a low payoff 
were bound between 1/10 and 9/10 but unknown. Hence, while the probability distribution is known in 
the risk task, in the ambiguity decision task, it is uncertain. The expected payoff structure is for both tasks 
the same. To be able to control for order effects, we switched the order of the decision tasks. Half of the 
sample started with the risk task and the other half with the ambiguity task.  
For both decision tasks, we showed our participants a loop consisting of six binary lotteries and asked to 
choose one to play: $13000|$13000; $10000|$19000; $7000|$25000; $4000|$31000; and $0|$38000. Each 
lottery was represented by an envelope containing 5 (1-9) high and 5 (1-9) low value payoffs for the risk 
(ambiguity) task. Clock-wise, the expected payoffs, as well as the variance of the payoffs, increased, i.e., the 
lotteries became “riskier”. Only between the two riskiest lotteries ($2000|$36000 and $0|$38000), the 
expected payoffs were the same, and only the variance continued to increase. Depending on the participant’s 
choice, one can say something about this individual’s level of risk/ambiguity aversion. For example, 
individuals choosing the safe lottery ($13000|$13000) are extremely risk averse.  
Participants did this task right after the CPR fishery game and were told that only one of them would have 
the chance to earn some extra money (lottery) based on either her risk or ambiguity choice. This is common 
practice in this type of economic experiments or tasks and has been validated in different studies (Hey and 
Lee 2005). 
Results are shown in Table S2 Overall, for both the risk and ambiguity decision task, the median choice was 
$ 7,000|$ 25,000. Apart from the median, we also calculated the average choice, following Cardenas and 
Carpenter (2013), by numbering the lotteries clock-wise from one to six starting with the safe bet. The 
average choice for the risk and ambiguity task was 3.4, which indicates the average to be the $ 7,000|$ 25,000 
lottery for the risk and ambiguity task. This reveals that our participants were neither particularly 
risk/ambiguity averse nor risk/ambiguity seeking. 
 
Table S2. Risk and ambiguity attitude elicitation task outcomes across communities: mean (standard 
deviation); median; range (min-max); N. 

 Location  
A B C D All Kruskal-

Wallis test 
Risk choice 3.0 (1.5); 3; 

1-6; N=63 
3.4 (1.6); 3; 
1-6; N=64 

3.1 (1.6); 3; 
1-6; N=60 

3.8 (1.9); 4; 
1-6; N=62 

3.4 (1.7); 3; 
1-6; N=249 

c2
risk = 7.806  

Prisk = 0.0502a 
Ambiguity 
choice 

3.2 (1.8); 3; 
1-6; N=63 

3.3 (1.6); 4; 
1-6; N=64 

3.0 (1.7); 3; 
1-6; N=60 

4.1 (1.8); 4; 
1-6; N=64 

3.4 (1.8); 3 
1-6; N=251 

c2
amb = 13.188  

Pamb = 0.0042b 
 Treatment 
 Baseline Threshold Risk  Ambiguity All Kruskal-

Wallis test 
Risk choice 3.3 (1.6); 3; 

1-6; N=63 
3.2 (1.6); 3; 
1-6; N=60 

3.5 (1.6); 3; 
1-6; N=64 

3.3 (1.8); 3; 
1-6; N=62 

3.4 (1.7); 3; 
1-6; N=249 

c2
riskT = 1.426  

PriskT = 0.7 
Ambiguity 
choice 

3.4 (1.9); 3; 
1-6; N=63 

3.6 (1.7); 3.5; 
1-6; N=60 

3.4 (1.7); 3; 
1-6; N=64 

3.3 (1.8); 3; 
1-6; N=64 

3.4 (1.8); 3; 
1-6; N=251 

c2
ambT = 0.904  

PambT = 0.8 
a According to a set of pairwise Mann–Whitney–Wilcoxon test, participants from A are significantly more risk averse 
than participants from D (P=0.0104); and participants from C are significantly more risk averse than participants 
from D (P=0.0498). 
b According to a set of pairwise Mann–Whitney–Wilcoxon test, participants from A are significantly more ambiguity 
averse than participants from D (P=0.006); and participants from B are significantly more ambiguity averse than 
participants from D (P=0.0106); and participants from C are significantly more ambiguity averse than participants 
from D (P=0.0010). 
 
We did not find any relationship between the earnings of a participant or the total catch of the groups and 
the risk or ambiguity choice. Overall, we did not find significant correlations between individuals’ total catch 
and choices in the risk and ambiguity task and neither between group total catch and the groups’ average 
choice in the task. Within each treatment, we only found a weak significant negative correlation between 
individuals’ total catch and the risk choice in the ambiguity treatment (Spearman’s correlation test, 
P=0.0851, rs = -0.22). 
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2.5 Post-experimental survey 
After the fishery game and the risk/ambiguity task (see above), each participant was interviewed following 
a structured form. We chose structured interviews to account for illiteracy. The interview consisted of five 
modules: 1) questions about the game, 2) the participants fishing activities, 3) perceptions on 
environmental/ecosystem change, including more dramatic changes, 4) cooperation and communication, 
and 5) demographics and household composition. Available upon request. 
 
3. Statistical Analysis  
3.1 General information 
Preceding each statistical test, we tested whether the given observations were normally distributed with a 
Shapiro-Wilk test (Shapiro and Wilk 1965). If the test produced positive results at a 5% significance level, 
we rejected the assumption of normality, and applied non-parametric tests (Kruskal-Wallis test (KW) for 
comparisons across more than 2 independent samples and Whitney–Wilcoxon rank-sum tests (MWW), for 
pair-wise comparisons). For KW, we report in the main text degrees of freedom as well as c2 and respective 
p-values. For MWW, we report p-values only. To compare cases of frequency, we used Fisher’s exact test 
(Kanji 1993). To assess the equality of variances, we applied Levene’s test. 
Statistical tests are based on group averages or medians as units of observation. If not stated otherwise, 
reported tests are two-sided.  
We analysed the data using Stata 14.2 if not specified differently and we used R for the graphics. We used 
group averages as unit of observation in all statistical tests and all reported tests are two-sided. See Table S3 
for an overview of the variables used for the statistical analysis. 
 
Table S3. Overview varibales used for statisitcal analysis. 

 Value range Description Motivation 

Overall stock size [0, 50] Average stock size (after catch, before 
regeneration) across all rounds per 
group per Stage 

We use average and median 
stock sizes as units of 
observation to take into 
account stock size 
dependency between 
rounds. 

 [0, 50] Median stock size (after catch, before 
regeneration) across all rounds per 
group per Stage 

Percentage of rounds above the 
threshold 

[0, 1] Average percentage of rounds groups 
sustain a stock level of 28 or above in 
Stage 2 

To assess whether high 
stock sizes are due to 
groups spending more time 
above the (potential) 
threshold to avoid a 
(potential) regime shift. 

Percentage of rounds above 
stock size of 20 

[0, 1] Average percentage of rounds groups 
sustain a stock level of 20 or above in 
either Stage of the game 

To assess whether high 
stock sizes are due to 
groups trying to avoid 
stock sizes below 20 (to 
avoid low regeneration 
rates). 

Percentage of rounds group 
achieved highest regeneration 
rate 

[0, 1] Average percentage of rounds groups 
achieve the highest regeneration rate in 
either Stage 

Proxy for optimal resource 
use 

Depletion  0 ∨	1 Group depleted resource before the 
end of the game 

 

Threshold crossing 0 ∨	1 Group crosses the threshold at some 
point during the game 

 

Gini coefficient [0, 1] Gini coefficient of group catch 
(dispersion of total catch within each 
group) 

Proxy for cooperation 
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3.2 Treatment effects 
3.2.1 Expectations guiding our analysis 
In our game, it is reasonable to assume that players make use of the opportunity to communicate to agree 
on exploitation levels. For groups that played baseline, the optimal collective strategy was to sustain a stock 
level of 20 throughout the game, i.e. catch 30 fish altogether in round one and then catch ten fish in each 
following round (highest regeneration rate, Figure 1b lower graph), for as long as all participants believe 
that the game continues. For the threshold, risk and ambiguity treatment, the optimal collective strategy was to 
sustain the stock just above the (potential) threshold (stock level of 28). If groups follow this strategy, we 
would expect that threshold, risk and ambiguity groups sustain overall higher stock levels compared to baseline. 
Assuming that players correctly assign and interpret probabilities and that they are risk-neutral (see SI2.4), 
we would furthermore expect that overall stock levels of the threshold groups are higher compared to risk or 
ambiguity. Whether overall sustained stock sizes for the ambiguity treatment will be higher than for risk 
depends on the actual influence of ambiguity on behaviour, what we do not know. However, players might 
not take the opportunity to communicate, and cooperation might furthermore not automatically lead to 
optimal resource use, as it was found in similar lab experiments(Schill et al. 2015, Lindahl et al. 2016). In 
that case, we would nevertheless expect that groups would avoid stock sizes in the lower regeneration rate 
area. Hence, we would, overall, still expect higher stock sizes for the threshold, risk and ambiguity treatment, 
compared to baseline as well as higher stock sizes for threshold, compared to risk and ambiguity. 
 

 
Fig S3. Time series of intermediate stock size (after extraction, before re-generation) for each group across 
place (A-D) and treatment in Stage 2 of the game. A red data point for any given stock size and round 
indicates that the climate event has happened and the stock will regenerate in that given round according 
to the resource dynamics with threshold (see Figure 1b). The pink horizontal line indicates the potential 
threshold.  
 
Apart from overall sustained stock size, we might also be interested in average catch, as the variable that 
reflects behaviour directly. However, first, as we measure stock size after catch and before regeneration, our 
variable of interest (stock size) represents behaviour very well. Second, given our particular experimental 
design in which the resource dynamics is represented by a discrete logistic growth function (see Fig S1), it 
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is not very informative to look at catch. Lower catch can result from being precautionary (keep stock levels 
above 34), but also from having a more aggressive exploitation strategy, i.e. sustained stock sizes in the 
lower resource growth range (below a stock size of 20 in the baseline, for example). Furthermore, as the game 
is played over several rounds, we would not expect to find measurable differences in average catch between 
the treatments. For example, assuming groups would follow the collective optimal strategy, catch would 
only differ in the first round (to reduce the stock to 28 rather than 20), but in each following round, the 
total catch would be 10, according to the MSY. In other words, in our game higher stock sizes can be 
sustained without compromising catches. 
 
3.1.2 Pair-wise non-parametric hypothesis tests 
  
Table S4. Results of pair-wise Mann–Whitney–Wilcoxon rank-sum tests comparing median stock sizes 
across treatments. 

 Baseline  Threshold Risk  Ambiguity 
Baseline  P = 0.365 P = 0.326 P = 0.0822 
Threshold   P = 0.623 P = 0.199 
Risk    P = 0.509 

Note: there are no significant differences with regard to median stock size across all 
treatments (Kruskal-Wallis test, df=3; c2=3.55, P=0.312). Differences between baseline 
and ambiguity are not robust to multiple comparison corrections, using Dunn’s test of 
multiple comparisons using rank sums. 
 
 
Table S5. Results of pair-wise Mann–Whitney–Wilcoxon rank-sum tests comparing variables of Table S3.  

Baseline compared to Threshold Risk 

Average stock size P=0.396 P=0.451 

Median stock size P=0.365 P=0.326 

Variance of average stock size W0=2.43; P=0.13 W0=2.156; P=0.152 

Percentage of rounds above stock 
level of 20 

P=0.308 P=0.274 

Percentage of rounds above stock 
level of 28 

P=0.256 P=0.22 

Percentage of rounds with highest 
regeneration rate 

P=0.864 P=0.731 

Depletion cases P=0.685 P=0.685 

 
 
Table S6. Results of pair-wise Mann–Whitney–Wilcoxon rank-sum tests comparing variables of Table S3.  

 Threshold compared to Risk Threshold compared to 
Ambiguity 

Risk compared to 
Ambiguity 

Average stock size P=0.777 P=0.266 P=0.584 

Median stock size P=0.623 P=0.199 P=0.509 

Variance of average stock 
size 

W0=0.107; P=0.746 W0=5.055; P=0.032 W0=1.567; P=0.22 

Percentage of rounds above 
stock level of 20 

P=0.646 P=0.396 P=0.887 

Percentage of rounds above 
stock level of 28 

P=0.952 P=0.498 P=0.431 

Percentage of rounds with 
highest regeneration rate 

P=0.555 P=0.506 P=0.894 

Depletion cases P=1.000 P=0.226 P=0.226 
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Whether threshold was 
crossed at some point 
during the game 

P=1.000 P=1.000 P=0.724 

 
 
Table S7. Results of pair-wise Whitney–Wilcoxon rank-sum tests across communities in Stage 1.  

  

Median stock size c2=5.417; P=0.144 

Variance of average stock 
size 

W0=4.46; P=0.007 

Percentage of rounds above 
stock level of 28 

c2=7.21; P=0.066 

Percentage of rounds with 
highest regeneration rate 

c2=11.023; P=0.012 

Depletion cases P=0.181 

 
 
Table S8. Results of pair-wise Whitney–Wilcoxon rank-sum tests across communities in Stage 2. 

  

Median stock size c2=15.674; P=0.001 

Variance of average stock 
size 

W0=12.297; P<0.0001 

Percentage of rounds above 
stock level of 28 

c2=15.524; P=0.0014 

Percentage of rounds with 
highest regeneration rate 

c2=24.617; P=0.0001 

Depletion cases P=0.001 

 
3.1.3 Threshold crossing 
Cases of crossing the (potential) threshold: Some groups managed to reverse the shift (Fig S2). In the 
threshold treatment, 2/8 groups that crossed the threshold reversed the shift. In the risk treatment, 1/9 groups 
that crossed the threshold reversed the shift (the climate event had happened in all nine instances). In the 
ambiguity treatment, for 3/7 groups that crossed the potential threshold the climate event had not yet 
occurred, with 2/3 of these groups recovering the stock. For the 4/7 groups in which the climate event did 
happen none recovered the stock (see Fig S3). In the baseline treatment, no single group recovered the higher 
regeneration rate once below a stock size 20. 
 
3.2 Community differences 
3.2.1 Hypotheses for explaining community differences 
We found pronounced differences in exploitation patterns between communities: groups that use the fishery 
in the game more sustainably often have higher educational levels, come from communities that rely on 
fishing styles that require strong coordination efforts, and in which feedbacks between fishing efforts and 
stock size in reality are less masked. Here we present a set of hypotheses to explain the observed community 
differences. 
Education levels and age could influence the game outcomes. In fact, whereas average education levels of 
participants from community A and C are high and average age is low, participants from community B have 
significantly lower education levels and are significantly older on average (see Table S1). This could explain 
why in comparison to community B, community A and C sustain on average higher stock sizes. Age and 
education could also influence group Gini coefficients. Higher education levels can increase individuals’ 
understanding about the optimal exploitation level, as well as their propensity to make use of 
communication for discussing and setting collective exploitation levels. We find a positive relationship 



9 
 

between the number of rounds in which groups achieved the MSY and the average education levels in the 
group, as well as a negative relationship between Gini coefficients and average education (see SI 3.3). 
Another explanation for why community A did so well overall could be found in the type of fishing style they 
practice. Survey data reveals that they all fish in groups, which are not only typically larger (see Table S2), 
but also have a particular fishing style (‘Chinchorro’; beach seine net with bag) which requires a high level 
of group coordination. This could carry over to the game and positively affect the likelihood of players 
working together. Previous experimental studies showed that direct payoff of cooperation in real life can 
explain game outcomes(Henrich et al. 2005, Prediger et al. 2011, Gneezy et al. 2016). 
The significant differences between community A and B in relation to average stock levels, cases of 
exploitation beyond the potential threshold, and depletion could also be explained by differences of ecological 
conditions the fishers face in their everyday life. Located in proximity to a major port and along the Magdalena 
River, Colombia’s main river, community B is exposed to high rates of pulse disturbances from the shipping 
industry, harbour facilities, and sediments and pollutants coming from the river. In particular, large projects 
for maintenance of the harbour facilities in the past, such as dredging and embankment construction, have 
heavily affected its local ecosystem. As a consequence, the impact of fishing on stock dynamics may be 
entirely masked, or at least less obvious, in comparison to the other communities. In contrast, in community 
A fishers are likely to benefit from the proximity of a marine protected area, which can buffer climatic and 
anthropogenic disturbances on fish stocks. The magnitude and frequency of exogenous disturbances that 
fishers from community B experience might affect the players’ planning horizon resulting in less sustainable 
exploitation patterns in order to secure catch now rather than risk losing it later. This aligns with theoretical 
work on optimal management in the face of exogenously driven regime shifts (Polasky et al. 2011) as well 
as evidence from CPR games testing the effect of exogenous degradation on use of a shared resource 
(Blanco et al. 2015) in the same region. 
Communities C and D fish mostly inside the lagoon complex that has been historically exposed to regime 
shift dynamics, such as hypoxic events, fish and shrimp collapses, and mangrove forest die-offs (Vilardy et 
al. 2011). Feedbacks between fishing effort and stock levels might be stronger in comparison to community B, which 
is also due to the enclosed fishing zone as well as less affected by dynamics of the Magdalena River. Both 
communities are located in the river’s floodplain. However, community C is the least affected, which could 
explain the significant difference in average stock levels and cases of depletion between both communities. 
Indeed, previous experimental evidence on endogenously driven regime shifts suggests that negative 
feedbacks between collective action for sustainable resource use and ecosystem degradation in reality could 
explain CPR game outcomes (Prediger et al. 2011). These results stem from a grazing game played with 
farmers from pastoral systems where bare soil patches are strong indicators of resource degradation. While 
degradation indicators in fisheries are not observable to the same extent, events of fish die-offs, which 
community C and D experienced in the past, could serve as such. 
 
3.2.2 Difference between Stage 1 and Stage 2 within communities 
Pair-wise comparisons within communities between Stage 1 and Stage 2 show no significant differences for 
median stock sizes (MWW, P=0.860). However, there are significant differences with respect to how often 
groups achieve the highest regeneration rate (MWW, P=0.0033). It appears that groups that did well in the 
sense of achieving high regeneration rates in Stage 1, did even better in Stage 2. In community A and C, in 
Stage 2, groups achieve significantly more often a higher regeneration rate compared to Stage 1 (MWW, 
PA=0.0001; PC=0.0036). However, we cannot say whether this improvement was due to the treatment or 
because of learning effects due to a limited sample size. 
 
3.3 Equal sharing (cooperation) 
Gini coefficient as proxy for cooperation 
We use the Gini coefficient of total group catch as proxy for cooperation, measuring the dispersion of total 
group catch within each group. Low Gini coefficients imply that catches and respective earnings are 
distributed equally among group members. In order to reach low values, it is reasonable to assume that 
players coordinated their play by making use of the opportunity to communicate to formulate and agree on 
exploitation levels that everyone followed. Only 3/64 did not communicate at all according to the 
observational data that the experimenters and the assistants collected. This assumption is supported by the 
fact that there is a significant positive correlation between average Gini coefficient per round in Stage 
1/Stage 2 and overall Gini coefficient in Stage 1/Stage 2 (Pearson’s rStage1 = 0.89, P < 0.0001; Pearson’s rStage2 = 
0.82, P < 0.0001; Fig S4). 
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Fig S4. Scatterplot of Gini coefficients averaged across rounds for each group and stage and the overall 
Gini coefficient measured at the end of either stage; Stage 1 (left); Stage 2 (right).  
 
 
Some notable patterns regarding the Gini coefficient  

• Gini coefficients were overall quite low; in fact, 9 groups in Stage 1 and 11 groups in Stage 2 
had a Gini coefficient = 0. However, we also have 7 groups in Stage 1 and 13 groups in Stage 2 
in which only one or two players had one single fish more than the other group members. 16/64 
groups in Stage 1 and 24/64 groups in Stage 2 achieved a Gini coefficient < 0.015 for the entire 
stage. A Gini < 0.015 includes group that shared the total harvest equally not within rounds but 
across rounds. E.g., dividing up the MSY of 10 between 4 does not work evenly, therefore, 
groups might split it the following: 2 players take 3 and 2 players take out 2. Doing that has the 
intention to share catch equally but as they do not know when the game ends, they can end up 
with this slight unequal catch in the end anyway.  

• There are no significant changes in Gini going from Stage 1 to Stage 2, neither by using 
treatments (Kruskal-Wallis, df = 3, c2 = 1.304, P = 0.728) or location (Kruskal-Wallis, df = 3, c2 
= 6.235, P = 0.1007) as grouping variable, with the difference in Gini between both stages as 
response variable. 

• There is a negative significant correlation between average education level in the group and 
overall Gini coefficient measured at the end of Stage 1 (Pearson’s r = -0.277, P < 0.0001). 

• There is a positive significant correlation between average age in the group and overall Gini 
coefficient measured at the end of Stage 1 (Pearson’s r = 0.298, P < 0.0001). 

• There is a positive significant correlation between average education level in the group and 
number of rounds in which a group achieved the MSY (Pearson’s r = 0.53, P = 0.000). 

 
3.4 Regression Models 
We regard Stage 1 of the game as ‘training stage’. This way, we could also gather observations unaffected 
by treatment. These observations could reduce noise in the regression model and potentially let us see the 
treatment effects more clearly, as they allow us to take group differences (independent of treatment) into 
account. We include median stock level from Stage 1 in the model to account for group differences, as there 
is a seemingly linear relationship between the average stock level in Stage 1 and 2.  
To account for community and participant differences, we include as well the factor variable community in 
the model. We also included in some models the Gini coefficient of total group catch of Stage 1 (‘Gini Stage 
1’) as a proxy for cooperation (see section 3.2 below). We use the Gini coefficient of Stage 1 rather than 
Stage 2, because the Gini coefficient from Stage 2 might be affected by the treatments, Gini Stage 1 and 
Gini Stage 2 are highly positively correlated (Pearson r = 0.8, P<0.0001). Since ‘Gini Stage 1’ and median 
stock level Stage 1 are clearly negatively correlated (Pearson's r = -0.54, P<0.0001), we should not be 
surprised if only one of these Stage 1 covariates will turn out to be significant. Table S9 shows the result of 
three different model variations. Model 2 has the lowest AIC and the one reported in the paper. 
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We also fitted a model with lowest order interactions between our explanatory variables. An F-test showed 
no significant difference between the model with and without interactions; thus, we concluded that the 
model with the whole dataset, without interactions should be used, since we found no support of reasonable 
interaction effects occurring.  
 
Table S9. Regression models with median stock size of Stage 2 as response variable. 

 Model 1 Model 2 Model 3 

Threshold 2.567 2.223 4.863 

 (0.378) (0.414) (0.200) 

Risk 6.296+ 5.940+ 6.800+ 

 (0.066) (0.067) (0.082) 

Ambiguity 7.783** 7.575** 9.541** 

 (0.005) (0.005) (0.004) 

B -10.10** -10.22** -14.24*** 

 (0.005) (0.004) (0.000) 

C -1.298 -1.198 -2.058 

 (0.448) (0.463) (0.279) 

D -6.834** -6.907** -7.178* 

 (0.007) (0.005) (0.023) 

Median Stock St 1 0.620** 0.685***  

 (0.001) (0.000)  

Gini St 1 -12.35  -41.05** 

 (0.397)  (0.004) 

Constant 10.67+ 8.063* 29.48*** 

 (0.077) (0.048) (0.000) 

R2 0.663 0.656 0.508 

Adjusted R2 0.614 0.613 0.447 

AIC 442.0 441.3 464.1 

Observations 64 64 64 

p-values in parentheses 
Median Stock St1 and Gini St 1 are negatively correlated; Pearson's r = -0.54. 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
Model diagnostics are available upon request. We tested the model regarding the assumptions of normally distributed 
residuals and heteroscedasticity. 
To account for heteroscedasticity, we use the so called HC3-estimator, a robust sandwich type estimator suggested by 
Elfron (1982), following the suggestion of Long and Ervin (2000). 
  
 
Table S9. Regression models with ‘percentage of rounds above threshold’ (Stage 2) as response variable (N 
= 64). 

 Model 1 Model 2 Model 3 Model 4 

Threshold 0.0912 0.0686 0.135 0.0763 

 (0.448) (0.549) (0.294) (0.535) 

Risk 0.222* 0.195+ 0.236* 0.204+ 

 (0.040) (0.057) (0.043) (0.064) 

Ambiguity 0.204* 0.187+ 0.248* 0.193+ 
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 (0.044) (0.068) (0.019) (0.074) 

B -0.359** -0.370** -0.442*** -0.369** 

 (0.004) (0.005) (0.000) (0.002) 

C -0.0545 -0.0492 -0.0658 -0.0301 

 (0.514) (0.562) (0.460) (0.730) 

D -0.185* -0.191* -0.189+ -0.129 

 (0.035) (0.035) (0.053) (0.157) 

Mean Stock St 1 0.0148* 0.0200***   

 (0.025) (0.001)   

Gini St 1 -0.874*  -1.500*** -0.985* 

 (0.044)  (0.000) (0.035) 

% rnds. stock >= 28 (St 1)    0.302* 

    (0.027) 

Constant 0.377+ 0.175 0.834*** 0.600*** 

 (0.060) (0.301) (0.000) (0.000) 

R2 0.566 0.533 0.497 0.560 

Adjusted R2 0.502 0.474 0.434 0.496 

AIC 19.11 21.80 26.47 19.96 

Observations 64 64 64 64 
P-values in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
Model diagnostics are available upon request. We tested the model regarding the assumptions of normally distributed residuals 
and heteroscedasticity. To account for heteroscedasticity, we use the so called HC3-estimator, a robust sandwich type estimator 
suggested by Elfron (1982), following the suggestion of Long and Ervin (2000). 
Note, ‘average % of rounds stock >= 28 St 1’ and ‘Gini St 1’ are negatively correlated (Pearson r = -0.477, P = 0.0001). Table S6 
shows the result of four different model variations. Model 1 has the lowest AIC and is the one reported in the paper. 
 

Regression models with threshold treatments only 
 
Table S11. Regression models with median stock size of Stage 2 as response variable, threshold treatments 
only (N=48). 

 Model 1 Model 2 Model 3 
Risk 3.142 3.241 1.980 
 (0.272) (0.239) (0.548) 
Ambiguity 5.043* 5.295* 4.661+ 
 (0.026) (0.014) (0.060) 
B -10.67** -10.94** -12.60** 
 (0.005) (0.004) (0.002) 
C -0.943 -1.029 -1.005 
 (0.642) (0.543) (0.671) 
D -4.154+ -4.211+ -4.359 
 (0.091) (0.076) (0.147) 
Median Stock St 1 0.419+ 0.562**  
 (0.059) (0.003)  
Gini St 1 -21.49  -43.08* 
 (0.270)  (0.016) 
Constant 19.04* 13.12* 33.16*** 
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 (0.014) (0.011) (0.000) 
R2 0.645 0.618 0.566 
Adjusted R2 0.583 0.562 0.502 
AIC 325.3 326.8 333.0 
Observations 48 48 48 

p-values in parentheses 
Median Stock St1 and Gini St 1 are negatively correlated; Pearson's r = -0.54. 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
Model 1 has the lowest AIC and is the one reported in the paper. 
 
Table S12. Regression models with ‘percentage of rounds above threshold’ (Stage 2) as response variable, 
threshold treatment only (N=48). 

 Model 1 Model 2 Model 3 Model 4 
Risk 0.112 0.112 0.0983 0.110 
 (0.316) (0.311) (0.375) (0.322) 
Ambiguity 0.114 0.120 0.113 0.115 
 (0.265) (0.255) (0.265) (0.262) 
B -0.440*** -0.456** -0.466*** -0.440*** 
 (0.000) (0.002) (0.000) (0.000) 
C -0.0492 -0.0561 -0.0478 -0.0441 
 (0.622) (0.554) (0.640) (0.661) 
D -0.144 -0.149 -0.146 -0.122 
 (0.132) (0.154) (0.145) (0.230) 
Mean Stock St 1 0.00697 0.0149*   
 (0.262) (0.025)   
Gini St 1 -1.064*  -1.387** -1.136+ 
 (0.036)  (0.002) (0.051) 
% rnds. stock >= 
28 (St 1)    0.135 

    (0.317) 
Constant 0.716** 0.398+ 0.949*** 0.822*** 
 (0.004) (0.063) (0.000) (0.000) 
R2 0.567 0.512 0.553 0.565 
Adjusted R2 0.492 0.440 0.487 0.489 
AIC 11.38 15.20 11.00 11.61 
Observations 48 48 48 48 

p-values in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
Model 3 has the lowest AIC and is the one reported in the paper. 
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